
CA-IDMS®
System Operations

15.0

This documentation and related computer software program (hereinafter referred to as the “Documentation”) is
for the end user's informational purposes only and is subject to change or withdrawal by Computer Associates
International, Inc. (“CA”) at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part,
without the prior written consent of CA. This documentation is proprietary information of CA and protected by
the copyright laws of the United States and international treaties.

Notwithstanding the foregoing, licensed users may print a reasonable number of copies of this documentation for
their own internal use, provided that all CA copyright notices and legends are affixed to each reproduced copy.
Only authorized employees, consultants, or agents of the user who are bound by the confidentiality provisions of
the license for the software are permitted to have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force
and effect. Should the license terminate for any reason, it shall be the user's responsibility to return to CA the
reproduced copies or to certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation “as is” without warranty of any kind,
including without limitation, any implied warranties of merchantability, fitness for a particular purpose or
noninfringement. In no event will CA be liable to the end user or any third party for any loss or damage, direct
or indirect, from the use of this documentation, including without limitation, lost profits, business interruption,
goodwill, or lost data, even if CA is expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's
applicable license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1)
and (2) or DFARS Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

Second Edition, October 2001

 2001 Computer Associates International, Inc.
All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 Contents

How to use this manual . xiii

Chapter 1. Introduction . 1-1
1.1 Overview . 1-3
1.2 DC/UCF teleprocessing services . 1-4

1.2.1 DC systems . 1-4
1.2.2 UCF systems . 1-5

1.3 CA-IDMS database services . 1-7
1.3.1 Central version operations . 1-7

1.3.1.1 Components of central version operations 1-8
1.3.1.2 Batch operations . 1-9
1.3.1.3 Teleprocessing operations . 1-10

1.3.2 Local mode operations . 1-12
1.4 Online software components . 1-13
1.5 CA-IDMS batch compilers and utilities 1-15

Chapter 2. System Startup . 2-1
2.1 Overview . 2-3
2.2 Preparatory steps . 2-4

2.2.1 Defining and generating the DC/UCF system 2-4
2.2.2 Defining dictionaries and databases . 2-4
2.2.3 Coding a #DCPARM macro . 2-6

2.3 System startup under OS/390 . 2-9
2.3.1 Step 1: Link edit the startup routine . 2-9
2.3.2 Step 2: Execute the startup routine 2-10

2.4 System startup under VSE/ESA . 2-16
2.4.1 Step 1: Create an RHDCPARM phase 2-16
2.4.2 Step 2: Code #DVFILE macros . 2-17

2.4.2.1 Format 1 #DVFILE macro . 2-21
2.4.2.2 Format 2 #DVFILE macro . 2-27
2.4.2.3 Format 3 #DVFILE macro . 2-32

2.4.3 Step 3: Create an RHDCFTAB module 2-32
2.4.4 Step 4: Execute the startup routine 2-33

2.5 System startup under VM/ESA . 2-41
2.5.1 Step 1: Assemble the #DCPARM macro 2-41
2.5.2 Step 2: Assemble the #SVCOPT macro 2-41
2.5.3 Step 3: Link edit the startup routine 2-42
2.5.4 Step 4: Execute the startup routine 2-43

2.6 System startup under BS2000/OSD . 2-44
2.6.1 Step 1: Customize RHDCPARM . 2-44
2.6.2 Step 2: Create an ENTER file . 2-44
2.6.3 Step 3: Update the FILE procedure 2-46
2.6.4 Step 4. Submit the job . 2-50

2.7 What happens during startup . 2-51
2.7.1 How the startup routine acquires storage 2-51
2.7.2 How the system is built . 2-54
2.7.3 The DC/UCF region/partition layout 2-59

Contents iii

2.8 Dynamically reloading nucleus modules 2-65

Chapter 3. Setting Up Interpartition Communication and the SVC 3-1
3.1 Overview . 3-3
3.2 Communications architecture . 3-4
3.3 DC-to-DC communications . 3-6
3.4 Batch and non-DC/UCF programs . 3-8

3.4.1 OS/390 . 3-10
3.4.1.1 Generating an IDMSOPTI module 3-10
3.4.1.2 Defining a SYSCTL file . 3-14

3.4.2 VSE/ESA . 3-15
3.4.2.1 Generating an IDMSOPTI module 3-15
3.4.2.2 Defining a SYSCTL file . 3-20

3.4.3 VM/ESA . 3-21
3.4.3.1 Generating an IDMSOPTI module 3-21
3.4.3.2 Defining a SYSCTL file . 3-25
3.4.3.3 Using SYSIDMS to access the correct CV 3-26

3.4.4 BS2000/OSD . 3-26
3.4.4.1 Generating an IDMSOPTI module 3-26
3.4.4.2 Defining a SYSCTL File . 3-31

3.5 Generating the SVC . 3-32
3.5.1 OS/390 and MSP/EX . 3-32
3.5.2 VSE/ESA . 3-38
3.5.3 VM/ESA . 3-44
3.5.4 BS2000/OSD . 3-45

Chapter 4. Distributed Applications Using UCF or APPC 4-1
4.1 UCF programs . 4-3

4.1.1 Terminating task data transfer . 4-3
4.1.1.1 How UCF transfers control and data 4-4
4.1.1.2 DC back-end . 4-6
4.1.1.3 DC front-end . 4-8
4.1.1.4 CICS front-end . 4-8
4.1.1.5 IMS-DC front-end . 4-11
4.1.1.6 UTM front-end . 4-12

4.1.2 Non-terminating task data transfer . 4-15
4.1.2.1 Flow of control . 4-17
4.1.2.2 CICS front-end . 4-24
4.1.2.3 Batch and IMS-DC front-ends 4-28
4.1.2.4 Accessing a UDAS front-end from a COBOL program 4-35

4.2 Advanced-program-to-program communications 4-40
4.2.1 Real APPC . 4-41
4.2.2 Emulated APPC . 4-43

Chapter 5. UCF Operations . 5-1
5.1 Overview . 5-3
5.2 UCF front-end . 5-5

5.2.1 Front-end table . 5-7
5.2.1.1 #UCFUFT macro . 5-8
5.2.1.2 #UCFUTD macro . 5-9
5.2.1.3 #UCFDEND macro . 5-12

iv CA-IDMS System Operations

5.2.1.4 Sample front-end table definition 5-12
5.2.1.5 Front-end table JCL . 5-12

5.2.2 Batch front-end . 5-14
5.2.2.1 Front-end load module assembly JCL 5-16
5.2.2.2 Batch front-end execution . 5-19
5.2.2.3 Batch front-end execution JCL 5-19
5.2.2.4 Setting options for batch UCF program execution 5-21

5.2.3 CICS front-end . 5-22
5.2.3.1 CICS front-end JCL . 5-26
5.2.3.2 CICS front-end execution . 5-29

5.2.4 CICS abort session program . 5-30
5.2.4.1 #UCFCICZ macro . 5-30
5.2.4.2 How to use the UCF CICS abort session program 5-31

5.2.5 VM/ESA front-end . 5-34
5.2.6 DC front-end . 5-37

5.2.6.1 Assembly JCL . 5-38
5.2.6.2 DC front-end execution . 5-41

5.2.7 IMS-DC front-end . 5-42
5.2.7.1 Assembly JCL . 5-43
5.2.7.2 IMS-DC front-end execution . 5-44

5.2.8 TIAM front-end . 5-45
5.2.9 TSO front-end . 5-47
5.2.10 UTM front-end . 5-50

5.2.10.1 Assembly JCL . 5-53
5.2.10.2 Load module JCL . 5-55
5.2.10.3 UTM front-end execution . 5-55

5.3 UCF back-end . 5-57
5.3.1 #FESTDEF macro . 5-57
5.3.2 #FESTENT macro . 5-58
5.3.3 Sample system table definition . 5-59
5.3.4 System table JCL . 5-59

5.4 UCF system generation statements . 5-63
5.5 Printer support . 5-64

5.5.1 Batch printer support . 5-65
5.5.1.1 Assembly JCL . 5-65
5.5.1.2 Batch program execution . 5-68

5.5.2 Printer support for IMS-DC . 5-72
5.5.2.1 Main task assembly JCL . 5-72
5.5.2.2 Subtask assembly JCL . 5-73
5.5.2.3 Executing the printer front-end 5-74

5.5.3 Printer support for DC and CICS . 5-74
5.5.3.1 Defining and starting UCF printer support 5-74
5.5.3.2 Special CICS considerations . 5-75

Chapter 6. TP-Monitor Considerations . 6-1
6.1 Overview . 6-3
6.2 CICS systems . 6-4

6.2.1 Standard CICS interface . 6-4
6.2.1.1 CICSOPT . 6-5
6.2.1.2 IDMSINTC . 6-5

Contents v

6.2.1.3 IDMSCINT . 6-15
6.2.2 INTCR141 . 6-18
6.2.3 IDMSINTL and IDMSCINL CICS interface macros 6-26

6.2.3.1 IDMSINTL . 6-26
6.2.3.2 IDMSCINL . 6-33

6.2.4 DC/UCF execution mode in the CICS environment 6-36
6.2.5 Running multiple CICS or DC/UCF systems 6-37
6.2.6 Components of the CICS and DC/UCF environment 6-37
6.2.7 CICS extended addressing considerations 6-38
6.2.8 What happens when a CA-IDMS instruction is executed 6-38
6.2.9 Using the various CICS interfaces . 6-39
6.2.10 CICS storage protection with IDMSINTC and IDMSINTL 6-40

6.2.10.1 CICS setup procedures . 6-40
6.2.10.2 CA-IDMS/DC/UCF setup procedures 6-40

6.3 UTM Systems . 6-41
6.3.1 DC/UCF execution modes in the UTM environment 6-41
6.3.2 IDMSTCM module . 6-41

Chapter 7. User Exits . 7-1
7.1 Overview . 7-3
7.2 DB exits . 7-4

7.2.1 IDMSAJNX . 7-5
7.2.2 IDMSCLCX . 7-9
7.2.3 IDMSDPLX . 7-11
7.2.4 IDMSIOXT . 7-13
7.2.5 IDMSIOX2 . 7-14
7.2.6 IDMSJNL2 . 7-18

7.3 DC/UCF exits . 7-20
7.3.1 IDMSSVCX . 7-21

7.3.1.1 IDMSSVCX examples . 7-23
7.3.1.2 Steps to add IDMSSVCX to your system 7-27

7.3.2 OPTIXIT . 7-30
7.3.3 OPTIQXIT . 7-31
7.3.4 TCKREXIT . 7-34
7.3.5 WAITEXIT . 7-34
7.3.6 WTOEXIT . 7-35
7.3.7 WTOREXIT . 7-43

7.4 Numbered exits . 7-49
7.4.1 Calling conventions for numbered exits 7-50
7.4.2 Macros required for DC/UCF calling conventions 7-51

7.4.2.1 #MOPT macro . 7-52
7.4.2.2 #START macro . 7-52
7.4.2.3 #RTN macro . 7-54
7.4.2.4 #GETSTK macro . 7-54

7.4.3 User-invoked numbered exits . 7-55
7.4.4 Installing numbered exits in the system 7-56

7.4.4.1 Step 1: Code a #DEFXIT macro 7-56
7.4.4.2 Step 2: Assemble and link edit the RHDCUXIT module 7-60

7.4.5 System-invoked numbered exits . 7-62
7.4.5.1 Exit 0 — System Initialization Exit 7-64
7.4.5.2 Exit 1 — Signon Exit . 7-64

vi CA-IDMS System Operations

7.4.5.3 Exit 2 — Signoff Exit . 7-65
7.4.5.4 Exit 4 — New Task Exit . 7-65
7.4.5.5 Exit 5 — Task Termination Exit I 7-65
7.4.5.6 Exit 6 — Task Termination Exit II 7-66
7.4.5.7 Exit 7 — Write-to-Log Exit . 7-66
7.4.5.8 Exit 8 — Log Full Exit . 7-66
7.4.5.9 Exit 9 — System Statistics Exit 7-66
7.4.5.10 Exit 12 — Terminal I/O Error Exit 7-67
7.4.5.11 Exit 13 — Shutdown Exit . 7-67
7.4.5.12 Exit 14 — BIND RUN UNIT and READY AREA Exit 7-67
7.4.5.13 Exit 15 — VIB Statistics Exit 7-68
7.4.5.14 Exit 16 — Write Printer Exit 7-69
7.4.5.15 Exit 17 — Input Data Stream Exit 7-69
7.4.5.16 Exit 18 — Output Data Stream Exit 7-70
7.4.5.17 Exit 19 — Asynchronous Terminal Connection Exit 7-72
7.4.5.18 Exit 20 — Resource Limit Exit 7-73
7.4.5.19 Exit 21 — SYSOUTL Report Termination Exit 7-76
7.4.5.20 Exit 22 — Report Security and Routing Exit 7-77
7.4.5.21 Exit 23 — Pre-BIND RUN UNIT Exit 7-78
7.4.5.22 Exit 24 — GET TIME Exit . 7-79
7.4.5.23 Exit 26 — OLQ JCL exit . 7-79
7.4.5.24 Exit 27 — Examining the ERE Extension Exit 7-80
7.4.5.25 Exit 28 — Security Preprocessing Exit 7-81
7.4.5.26 Exit 29 — Security Postprocessing Exit 7-82
7.4.5.27 Exit 30 — Deadlock Victim Selection Exit 7-83
7.4.5.28 Exit 31 — Transaction Statistics Exit 7-84
7.4.5.29 Exit 32 — SYSOUTL Detail Record Exit 7-85
7.4.5.30 Exit 33 — Program Loader Exit 7-85
7.4.5.31 Exit 34 — Unqualified Dbkey FIND/OBTAIN Exit 7-86
7.4.5.32 Exit 35 — Stalled Task Information Exit 7-87
7.4.5.33 Exit 36 - Global Deadlock Victim Selection Exit 7-88
7.4.5.34 Exit 37 - Recovery Wait Exit 7-88
7.4.5.35 Exit 38 - Quiesce Area Exit . 7-89

Chapter 8. Extended Addressing and Multitasking 8-1
8.1 About this chapter . 8-3
8.2 Extended addressing considerations . 8-4

8.2.1 AMODE and RMODE assignment . 8-4
8.2.2 Program pool usage . 8-5
8.2.3 Storage pool usage . 8-6
8.2.4 Treatment of dynamically-built control blocks 8-7

8.3 Multitasking support . 8-8
8.3.1 How DC handles concurrency . 8-8
8.3.2 How to implement OS/390 multitasking 8-11
8.3.3 How to implement BS2000/OSD multitasking 8-11
8.3.4 Coding considerations . 8-12
8.3.5 Monitoring multitasking performance 8-14
8.3.6 Multitasking information in dumps 8-15

8.3.6.1 OS/390 . 8-15
8.3.6.2 BS2000/OSD . 8-17

Contents vii

8.3.7 Routing system snaps to a sequential file 8-18

Chapter 9. Statistics . 9-1
9.1 Overview . 9-3
9.2 System-wide statistics . 9-4

9.2.1 When system-wide statistics are written 9-4
9.2.2 Categories of statistics . 9-5

9.3 Task and external request unit statistics 9-10
9.3.1 Enabling statistics collection . 9-10
9.3.2 How statistics accumulate at run time 9-11

9.3.2.1 DC/UCF statistics collected . 9-11
9.3.2.2 Non-SQL DB statistics . 9-12
9.3.2.3 SQL DB statistics . 9-12

9.4 Transaction statistics . 9-14
9.4.1 Enabling statistics collection . 9-14
9.4.2 How statistics accumulate at run time 9-15

9.5 CA-ADS dialog statistics . 9-17
9.5.1 Enabling statistics collection . 9-17
9.5.2 How statistics accumulate at run time 9-18
9.5.3 Categories of CA-ADS statistics . 9-19

9.6 Histograms . 9-21
9.6.1 Overview of histograms . 9-21
9.6.2 How histograms accumulate at run time 9-23
9.6.3 System-wide histograms . 9-23
9.6.4 Task histograms . 9-24
9.6.5 Line histograms . 9-26
9.6.6 Overriding histogram defaults . 9-26

9.6.6.1 Coding #HSTDEF macros . 9-27
9.6.6.2 Creating the RHDCHIST module 9-28

9.7 User-written statistics support . 9-31
9.8 Examining statistics . 9-32

9.8.1 Current run-time statistics . 9-32
9.8.2 Logged statistics . 9-32

Chapter 10. System Performance . 10-1
10.1 Overview . 10-3
10.2 Abend detection and timed functions . 10-4

10.2.1 Run-time events that cause abends 10-4
10.2.2 Mechanisms that detect abnormal processing 10-4

10.3 Database operations . 10-6
10.4 Deadlock detector performance management 10-7
10.5 Program loading . 10-8

10.5.1 General strategies . 10-8
10.5.2 Defining load lists . 10-9

10.6 Program pools . 10-11
10.6.1 Types of program pool . 10-11
10.6.2 Run-time performance considerations 10-11

10.7 Resource management . 10-14
10.7.1 Task resource and deadlock management 10-14
10.7.2 Resource limits . 10-14

10.8 System run units . 10-17

viii CA-IDMS System Operations

10.9 External request units . 10-19
10.10 Storage pools . 10-21

10.10.1 Contents of storage pools . 10-21
10.10.2 How the system allocates storage in storage pools 10-22
10.10.3 Run-time performance considerations 10-23

10.11 Tasks . 10-25
10.12 Terminal exception response protocol 10-26

Chapter 11. The System Log . 11-1
11.1 Overview . 11-3
11.2 Maintaining the system log . 11-4

11.2.1 Database log (DDLDCLOG area) 11-4
11.2.2 Sequential log files . 11-5

11.3 Accessing logged information . 11-7
11.4 How the system logs errors . 11-8

Chapter 12. Applying Optional Functionality 12-1
12.1 Overview . 12-3
12.2 Creating an RHDCOPTF module . 12-4

12.2.1 #DEFOPTF macro . 12-4
12.2.2 Example . 12-4

Chapter 13. CA-IDMS in a Sysplex Environment 13-1
13.1 Using Shared Cache . 13-3

13.1.1 Overview . 13-3
13.1.2 About shared cache . 13-3
13.1.3 Deciding to use shared cache . 13-6
13.1.4 Implementing shared cache . 13-7

13.1.4.1 Defining shared cache to the Coupling Facility 13-7
13.1.4.2 Defining shared cache in CA-IDMS 13-7

13.1.5 Monitoring shared cache . 13-8
13.1.6 Tuning a shared cache . 13-8

13.1.6.1 What you can do . 13-8
13.2 Using Dynamic Database Session Routing 13-10

13.2.1 Overview . 13-10
13.2.2 About dynamic database session routing 13-10
13.2.3 Planning to use dynamic database session routing 13-11
13.2.4 Implementing dynamic database session routing 13-11

13.2.4.1 Using DBGroups . 13-12
13.2.4.2 Back-end CV definitions . 13-12
13.2.4.3 Front-end CV definitions . 13-13
13.2.4.4 How dynamic database session routing works 13-13
13.2.4.5 Coupling Facility considerations 13-15
13.2.4.6 Application considerations . 13-15

13.2.5 Managing dynamic database session routing 13-16
13.2.6 Monitoring and tuning dynamic database session routing 13-17

13.3 Data Sharing . 13-19
13.3.1 Overview . 13-19
13.3.2 Data sharing groups . 13-19
13.3.3 Designing Data Sharing Groups . 13-19

Contents ix

13.3.3.1 Types of Groups . 13-20
13.3.3.2 Data Sharing Group Versus DBGroup 13-22

13.3.4 Defining Data Sharing Groups . 13-23
13.3.4.1 Selecting a Group Name . 13-23
13.3.4.2 Configuring the Coupling Facility 13-23
13.3.4.3 Specifying Group Membership 13-27

13.3.5 Sharing Update Access to Data . 13-28
13.3.5.1 Shared Area Requirements . 13-28
13.3.5.2 Notify Locking Considerations 13-29
13.3.5.3 Enabling Data Sharing . 13-29
13.3.5.4 Altering the DMCL Definition 13-29

13.3.6 Member Failure . 13-31
13.3.7 Coupling Facility Failures . 13-31
13.3.8 Group Restart . 13-33
13.3.9 Accessing Unrecovered Data . 13-34
13.3.10 Sharing Queues and Enqueued Resources 13-34

13.3.10.1 Sharing Queues . 13-34
13.3.10.2 Sharing Enqueued Resources 13-36

13.3.11 Monitoring Data Sharing Groups 13-37
13.3.11.1 Monitoring Through DCMT Commands 13-37
13.3.11.2 Monitoring Through Performance Monitor 13-39
13.3.11.3 Monitoring Through Journal Reports 13-39

13.4 CV Cloning . 13-40
13.4.1 Overview . 13-40
13.4.2 About CV cloning . 13-40
13.4.3 Planning CV cloning . 13-40
13.4.4 Implementing CV cloning . 13-40

13.4.4.1 System definition requirements 13-40
13.4.4.2 Special file requirements for CV clones 13-41
13.4.4.3 System start up JCL requirements 13-41
13.4.4.4 Using CV clones with dynamic database session routing 13-42
13.4.4.5 Using CV clones with data sharing 13-42

Appendix A. OS/390 Performance Considerations A-1
A.1 Overview . A-3
A.2 Maximum number of files . A-4
A.3 Performance considerations . A-5

Appendix B. VSE/ESA Considerations . B-1
B.1 Overview . B-3
B.2 Cross-address space communication . B-4
B.3 Storage considerations for the batch external interface B-5
B.4 Overriding VSE/ESA file specifications at run time B-6
B.5 Implementing VSE/ESA job accounting support B-7
B.6 SVA-eligible nucleus modules . B-8

Appendix C. VM/ESA Considerations . C-1
C.1 Overview . C-3
C.2 Communication between virtual machines C-4
C.3 Local mode database access . C-5

x CA-IDMS System Operations

Appendix D. BS2000/OSD Considerations . D-1
D.1 About this appendix . D-3

Appendix E. DC/UCF Test Environment . E-1
E.1 Overview . E-3
E.2 Programs and the test environment . E-5

E.2.1 General considerations . E-5
E.2.2 Programs in the load areas . E-5
E.2.3 Programs in load (core-image) libraries E-6

E.3 The test environment at run time . E-8
E.3.1 Load lists . E-8
E.3.2 SYSLOAD load list . E-8

E.4 Example of test environment execution E-10

Appendix F. Simulating 3270-Type Terminals F-1
F.1 Overview . F-3

F.1.1 Online simulator . F-4
F.1.2 Batch simulator . F-4

F.2 Starting and ending a simulator session . F-6
F.3 Facsimile screens . F-7
F.4 Composing input lines . F-8

F.4.1 General instructions . F-9
F.4.2 Simulating control keys . F-10
F.4.3 Changing the simulator environment F-12

F.5 Additional batch simulator topics . F-13
F.5.1 System configuration . F-13

F.5.1.1 System generation statements . F-13
F.5.1.2 Configurations for multiple lines and terminals F-14

F.5.2 Control commands . F-15
F.5.2.1 MAXTERM . F-16
F.5.2.2 PAUSE . F-16
F.5.2.3 SET . F-17
F.5.2.4 TERMINAL . F-19
F.5.2.5 TIME . F-20

F.5.3 Batch simulator output . F-21
F.5.3.1 Representation of 3270 terminal attributes F-21
F.5.3.2 Information provided for screen images F-21
F.5.3.3 Sample screens . F-22

F.5.4 Executing the batch simulator . F-24
F.5.4.1 OS/390 systems . F-24
F.5.4.2 VSE/ESA systems . F-25
F.5.4.3 VM/ESA Systems . F-25
F.5.4.4 BS2000/OSD systems . F-26

F.6 Simulator messages . F-27

Index . X-1

Contents xi

xii CA-IDMS System Operations

How to use this manual

How to use this manual xiii

What this manual contains

■ Chapter 1 — Contains introductory information about CA-IDMS DC/UCF
systems, including descriptions of CA-IDMS DC and UCF (Universal
Communications Facility) teleprocessing services and of CA-IDMS database
services

■ Chapters 2-8 — Provide instructions on starting up CA-IDMS DC/UCF, including
information about how to prepare the DC/UCF startup routine; and document
information on configuring system components for a DC/UCF system that
provides CA-IDMS database services

■ Chapters 9-11 — Provide information about how to maintain and adjust system
performance using the system log and statistics

■ Appendixes — Provide information specific to various operating systems, the
DC/UCF test environment, and how to simulate 3270-type terminals

xiv CA-IDMS System Operations

How product names are referenced

This manual uses the term CA-IDMS to refer to any one of the following CA-IDMS
components:

■ CA-IDMS/DB — The database management system

■ CA-IDMS/DC — The data communications system and proprietary teleprocessing
monitor

■ CA-IDMS/UCF — The universal communications facility for accessing CA-IDMS
database and data communications services through another teleprocessing
monitor, such as CICS

■ CA-IDMS/DDS — The distributed database system

This manual uses the terms DB, DC, UCF, DC/UCF, and DDS to identify the specific
CA-IDMS component only when it is important to your understanding of the product.

How to use this manual xv

Who should use this manual

■ System administrators and data communications administrators (DCAs) responsible
for creating and maintaining DC/UCF systems

■ Systems programmers who code user-exit routines and make other system-level
definitions

xvi CA-IDMS System Operations

 Related documentation

■ CA-IDMS System Generation

■ CA-IDMS System Tasks and Operator Commands

 ■ CA-IDMS Utilities

■ CA-IDMS installation manual for your operating system

How to use this manual xvii

Understanding syntax diagrams

Look at the list of notation conventions below to see how syntax is presented in this
manual. The example following the list shows how the conventions are used.

UPPERCASE

OR

SPECIAL CHARACTERS

Represents a required keyword, partial keyword,
character, or symbol that must be entered
completely as shown.

lowercase Represents an optional keyword or partial keyword
that, if used, must be entered completely as
shown.

underlined lowercase Represents a value that you supply.

← Points to the default in a list of choices.

lowercase bold

Represents a portion of the syntax shown in
greater detail at the end of the syntax or elsewhere
in the document.

��────────────────────── Shows the beginning of a complete piece of
syntax.

──────────────────────�� Shows the end of a complete piece of syntax.

──────────────────────� Shows that the syntax continues on the next line.

�────────────────────── Shows that the syntax continues on this line.

──────────────────────�─ Shows that the parameter continues on the next
line.

─�────────────────────── Shows that a parameter continues on this line.

�── parameter ─────────� Shows a required parameter.

 �─┬─ parameter ─┬─────�

└─ parameter ─┘
Shows a choice of required parameters. You must
select one.

 �─┬─────────────┬─────�

└─ parameter ─┘
Shows an optional parameter.

 �─┬─────────────┬─────�

├─ parameter ─┤

└─ parameter ─┘

Shows a choice of optional parameters. Select
one or none.

 ┌─────────────┐

 �─�─ parameter ─┴─────�
Shows that you can repeat the parameter or
specify more than one parameter.

┌───── , ─────┐

 �─�─ parameter ─┴─────�
Shows that you must enter a comma between
repetitions of the parameter.

xviii CA-IDMS System Operations

Sample syntax diagram

How to use this manual xix

xx CA-IDMS System Operations

 Chapter 1. Introduction

1.1 Overview . 1-3
1.2 DC/UCF teleprocessing services . 1-4

1.2.1 DC systems . 1-4
1.2.2 UCF systems . 1-5

1.3 CA-IDMS database services . 1-7
1.3.1 Central version operations . 1-7

1.3.1.1 Components of central version operations 1-8
1.3.1.2 Batch operations . 1-9
1.3.1.3 Teleprocessing operations . 1-10

1.3.2 Local mode operations . 1-12
1.4 Online software components . 1-13
1.5 CA-IDMS batch compilers and utilities 1-15

Chapter 1. Introduction 1-1

1-2 CA-IDMS System Operations

1.1 Overview

 1.1 Overview

The CA-IDMS DC and UCF systems provide database and teleprocessing services for
the development and execution of applications. Development, production, and
end-user systems can coexist in the CA-IDMS environment. This manual describes
how to maintain and use teleprocessing and database services in the DC/UCF
environment:

■ Teleprocessing services, which allow users to execute online applications from
multiple terminals at the same time, are managed by DC or UCF, the Universal
Communications Facility.

■ Database services, which allow batch and online applications to access and update
the database, are provided by DC/UCF. The full range of CA-IDMS database
services are provided.

Software components provided for use in the DC/UCF system include:

■ Online components that allow users to interactively create and maintain definitions
for system, database, and application support

■ Batch compilers, facilities, and utilities that complement online software
components, allowing users to create and maintain definitions and perform other
tasks using batch execution mode

■ System tasks that allow users to access system services and view current system
information while using the DC/UCF system

This chapter provides introductory information about:

■ CA-IDMS teleprocessing services (DC and UCF)

■ CA-IDMS database services

■ Online software components

■ CA-IDMS batch compilers and utilities

Chapter 1. Introduction 1-3

1.2 DC/UCF teleprocessing services

1.2 DC/UCF teleprocessing services

CA-IDMS teleprocessing services are managed by either DC or UCF:

■ DC is the CA-IDMS teleprocessing monitor. It manages terminal input and output
operations and all devices in a teleprocessing network.

■ UCF is the CA-IDMS interface to other teleprocessing (TP) monitors. UCF
allows online DC applications and software components to be executed from
terminals controlled by TP monitors other than DC.

 1.2.1 DC systems

DC manages the data communications environment, integrating terminal input/output
(I/O) operations with central version database operations. Additionally, DC manages
all devices in the teleprocessing network.

DC is fully integrated with the CA-IDMS DBMS, providing all CA-IDMS central
version database services in addition to the teleprocessing services necessary to execute
online application programs.

Because DC controls terminal I/O operations, online application programs can execute
within the DC region/partition. This architecture results in reduced CPU time and
faster terminal response time because database requests are not transferred across
regions/partitions.

The figure below shows how the DC system handles both batch and online application
programs. In this figure, online application program A executes in the DC/UCF
region/partition. At the same time, batch program B executes in a separate
region/partition and passes its requests for database services through a supervisor call
(SVC).

�� For more information about how database requests are passed from batch programs
to DC/UCF, see 1.3, “CA-IDMS database services” on page 1-7.

1-4 CA-IDMS System Operations

1.2 DC/UCF teleprocessing services

 1.2.2 UCF systems

UCF allows online CA-IDMS application programs to be executed from terminals
controlled by a non-DC teleprocessing monitor, while providing all the services of DC.
UCF also allows programs to be executed from a different DC system.

Supported teleprocessing monitors: UCF supports the following teleprocessing
monitors (TP monitors) and terminal control facilities:

 AIM (MSP/EX)
BATCH (used to simulate a line mode terminal)

 CICS
 CMS (VM/ESA)
 DC
 IMS-DC
 TIAM (BS2000/OSD)
 TSO
 UTM (BS2000/OSD)

UCF components: The major components of the UCF run-time environment are:

■ Host TP monitor — The teleprocessing monitor that controls terminal input/output
operations. The host TP monitor is commonly referred to as the front-end system.

Chapter 1. Introduction 1-5

1.2 DC/UCF teleprocessing services

■ UCF front-end program — The program that executes within the host TP-monitor
region/partition and communicates with the UCF back-end system.

■ UCF back-end system — A DC/UCF system that provides all the capabilities of a
standard DC system except terminal handling.

The figure below shows the major components of the UCF run-time environment. The
end user invokes a front-end UCF task. The task is executed by the UCF back-end
system:

1-6 CA-IDMS System Operations

1.3 CA-IDMS database services

1.3 CA-IDMS database services

In the DC/UCF system, CA-IDMS controls the database environment by managing the
flow of information between application programs and the database.

CA-IDMS supports two operating modes:

■ Central version operations allow multiple batch and/or online applications to
access and update a CA-IDMS database at the same time. All applications using
central version services share the same copy of the CA-IDMS database
management system (DBMS), which provides security, automatic recovery, and
control over concurrent access.

■ Local mode operations restrict database access so that a single application, while it
executes, has its own dedicated copy of the DBMS. The application using local
mode services has exclusive access to a given database area while in update mode.

When it executes, a given batch application can execute using local mode services or
central version services. A batch application can sometimes use local mode services
and sometimes use central version services.

Central version database services are used for all online programs that access IDMS
databases.

�� For more information about the DB environment, refer to CA-IDMS Database
Administration.

1.3.1 Central version operations

CA-IDMS central version operations are typically preferable to local mode operations
in cases where more than one application needs to update the database during the same
period of time. This is because database requests from multiple application programs
are passed to a single copy of the DBMS. Multiple applications can access and/or
update the database concurrently.

Services provided by central version operations include:

■ Control over concurrent access of database records. Although applications can
access the database at the same time, applications cannot concurrently update a
given database record when using central version database services. This ensures
data integrity and provides for efficient system throughput of multiple jobs.

■ Automatic database recovery operations. The DC/UCF system automatically
performs database recovery operations for an aborted database transaction without
interrupting service to other concurrently executing transactions. A database
transaction is a recoverable unit of work to the DBMS. An SQL transaction
begins with the first SQL request and ends when it issues a COMMIT WORK
statement.

Chapter 1. Introduction 1-7

1.3 CA-IDMS database services

A run unit is that portion of non-SQL program processing that begins with a
BIND RUN UNIT statement and ends with a FINISH statement. It can consist of
any number of database requests, and a single program can consist of several
consecutive run units.

1.3.1.1 Components of central version operations

When performing central version database services for one or more concurrent
applications, CA-IDMS uses the following components:

Subschemas and access modules: Both subschemas and access modules
consist of a fixed portion which is loaded into the DC/UCF program pool at run time
and can be shared by any number of concurrently executing programs. For each
executing program, a variable portion is allocated in the DC/UCF storage pool. The
variable portion is used to contain the state information for a database transaction.

DBMS and DMCL: The DBMS and the run-time DMCL module are loaded in the
DC/UCF region/partition during system startup. The DMCL module is specified for
the DC/UCF system in the system's #DCPARM macro (discussed in Chapter 2,
“System Startup”).

Interpartition communication: DC/UCF is started in its own region/partition.
The following additional components are required for application programs that request
CA-IDMS central version services from a region/partition other than the one in which
DC/UCF runs:

■ CA-IDMS SVC (supervisor call) routine — The CA-IDMS SVC passes control
and data from application programs executing in regions/partitions other than the
one in which DC/UCF executes. The SVC also passes control and data the other
way, from DC/UCF to the application programs. An SVC is used in the following
cases:

DBMS All online and batch applications that request CA-IDMS
central version database services share a central copy of
the DBMS.

Run-time DMCL The DMCL used under the central version defines all
database areas that application programs may access
under the central version.

Database name tables A database name table contains database names, which
group one or more segments required by an application,
and for non-SQL database access, subschema mappings.
To be used at run time, a database name table must be
associated with the run-time DMCL module.

Subschemas A subschema defines a program's view of the database
when using native DML or LRF.

Access modules An access module defines both the logical view of a
database and access paths when using SQL.

1-8 CA-IDMS System Operations

1.3 CA-IDMS database services

– For batch applications that request CA-IDMS database services while
executing in batch region/partitions

– For UCF communication between an application executing in DC/UCF and
the TP monitor being used by the end user

– For TP-monitor applications that request CA-IDMS database services from
other TP monitors without using UCF

– For DC-to-DC program communication within the same CPU

In OS/390 and VSE/ESA systems, an actual SVC is used. In VM/ESA and
BS2000/OSD systems, equivalent modules perform CA-IDMS SVC services.

■ CA-IDMS DBMS interface module (IDMS) — The IDMS module loads the
appropriate interface module for the application program:

– The batch interface modules for batch applications

– The TP-monitor interface module for applications that execute under another
TP monitor without using UCF services

Batch programs are link edited with the IDMS module and then started in other
region/partitions. Batch operations are discussed below, followed by TP-monitor
operations.

■ IDMSOPTI module — The IDMSOPTI module supplies database-related
information to the batch interface. At run time, the batch interface or TP-monitor
interface module (for non-UCF programs) reads parameters from the IDMSOPTI
module. These parameters determine whether the application can use central
version database services and, if it can, the DC/UCF system the application can
access.

■ SYSCTL file — A SYSCTL file can supply application-execution information for
batch programs and programs that execute under other TP monitors without UCF.
When appropriate, a user can utilize a SYSCTL file to override execution and
database information specified in the IDMSOPTI module for a program.

�� The SVC routine, the IDMSOPTI module, and the SYSCTL file are discussed in
more detail in Chapter 3, “Setting Up Interpartition Communication and the SVC.”

 1.3.1.2 Batch operations

Batch programs execute in a batch region/partition. Thus, they do not execute in the
same region/partition in which DC/UCF executes. Batch applications that need to
access DB must be link edited with the IDMS module and started as job steps in their
own regions/partitions.

The IDMS module then loads the batch interface, which reads run-time parameters
from any of the following locations:

■ The IDMSOPTI module (if any) assembled and link edited with the program and
the IDMS module before the program is executed

Chapter 1. Introduction 1-9

1.3 CA-IDMS database services

■ A SYSCTL file identified at program execution time

■ A SYSIDMS parameter file, included in the batch command facility JCL stream.

These parameters dictate the technique used to establish communication between the
application program and the DBMS.

CA-IDMS SVC: At run time, a CA-IDMS SVC passes control and data between the
batch program in the batch region/partition and the DC/UCF region/partition.

The figure below illustrates CA-IDMS central version operations for batch using
navigational DML requests. For each transaction, a storage area that contains variable
information is present in the DC/UCF region. Because programs A and B use the
same subschema, they share a copy of the subschema load modules. If the programs
used different subschemas, two subschemas would be present:

 1.3.1.3 Teleprocessing operations

Central version operations are required for application programs run under a
teleprocessing (TP) system. If a TP system other than DC is used, all applications
executed on behalf of the TP system share a TP-interface module tailored to the
specific TP monitor. TP-interface modules are provided at DC/UCF installation time
for the following TP monitors:

 ■ CICS

1-10 CA-IDMS System Operations

1.3 CA-IDMS database services

 ■ TIAM

 ■ UTM

Other TP monitors, such as IMS-DC, can be run with DC/UCF by using the standard
CA-IDMS batch interface.

�� For a discussion of TP-monitor operating environments, see Chapter 6,
“TP-Monitor Considerations.”

At run time, the interface module passes control and data to the CA-IDMS SVC,
which in turn passes this information to DC/UCF. Information from DC/UCF is
passed through the SVC back to the TP-interface module. The standard CA-IDMS
interface module, IDMS, is not link edited with these programs.

CICS: The IDMS interface module is linked with the CICS interface module,
IDMSINTC.

Address spaces: DC/UCF and the TP monitor run as main tasks in separate
regions/partitions. The figure below shows how DC/UCF and the TP monitor each
executes in its own region/partition:

Chapter 1. Introduction 1-11

1.3 CA-IDMS database services

1.3.2 Local mode operations

Each batch application program using CA-IDMS local mode database services uses a
dedicated copy of the database management system (DBMS). For CA-IDMS to run in
local mode, the CA-IDMS interface module (IDMS) must be link edited with the
application program. (Alternatively, a COBOL application program can load the
IDMS module dynamically at run time.)

At run time, CA-IDMS loads the batch interface, which in turn loads into the
application program's region/partition a copy of:

 ■ The DBMS

■ A DMCL module

■ A database name table

■ The program's subschema or access module

The DMCL module to be used is named in the SYSIDMS parameter file (the default
DMCL name is IDMSDMCL).

�� For information on defining subschemas and DMCL modules, see the CA-IDMS
Database Administration.

For information on defining access modules, refer to CA-IDMS SQL Programming
Guide.

Database services: The batch interface passes requests for database services from
the application program to the DBMS. The DBMS performs the requested
retrieval/storage operations and posts the journal file if necessary. The figure below
illustrates CA-IDMS local mode operations. The application program uses a dedicated
copy of the database management system:

1-12 CA-IDMS System Operations

1.4 Online software components

1.4 Online software components

CA-IDMS online software components allow users to perform system creation and
maintenance activities in an interactive manner. Online software components are also
sometimes referred to as development tools because they allow users to develop and
maintain applications.

The table below lists available online components. Some of these components are
supplied with DC/UCF. Other components must be purchased as separate products.

Component Description

CA-ADS A fourth-generation application development
environment, including ADS/OnLine and ADS/Batch,
used to create and execute online and batch applications
that access and update CA-IDMS databases

Automatic System
Facility (ASF)

A facility that allows users to create and update
non-SQL data tables

IDD menu facility A menu-driven facility that allows users to add and
maintain definitions in data dictionaries; the menu
facility provides the same services as online IDD

CA-IDMS Performance
Monitor

A product that provides online and printed reports on
DC/UCF task and system activities

CA-ICMS A product that links personal computers and
minicomputers to the data management and storage
capabilities of the mainframe computer

Online debugger A facility that can be used to detect, trace, and eliminate
errors in programs running under the control of DC/UCF

Online command facility
(OCF)

An online tool that allows users to create and maintain a
physical database definition and allows SQL users to
issue interactive SQL requests.

Online IDD An online tool that allows users to create and maintain
definitions in the data dictionary using IDD Data
Dictionary Definition Language (DDDL) statements and
the IDD DDDL compiler

Online mapping (OLM) An online tool that allows users to define screen
displays for online applications and data transmission
formats for ADS/Batch applications

CA-OLQ A product that can be used to retrieve and format
information from CA-IDMS databases through an
English-like query language

Online schema compiler An online tool that allows users to utilize the CA-IDMS
DDL compiler to create and update schemas

Chapter 1. Introduction 1-13

1.4 Online software components

Component Description

Online subschema
compiler

An online tool that allows users to utilize the CA-IDMS
DDL compiler to create and update subschemas

Online system generation
compiler

An online tool that allows users to create data dictionary
definitions for DC/UCF systems and to generate
executable systems based on those definitions

Transfer control facility
(TCF)

A facility that allows users to switch back and forth
between CA-IDMS online development tools, without
having to terminate their sessions in the individual tool

1-14 CA-IDMS System Operations

1.5 CA-IDMS batch compilers and utilities

1.5 CA-IDMS batch compilers and utilities

This chapter lists batch compilers and utilities provided by CA-IDMS. Some
compilers and utilities listed here might not be installed at your site.

Some of these batch compilers and utilities have online counterparts. For example,
ADSOBGEN is the batch counterpart of the CA-ADS dialog compiler (ADSC).
CA-IDMS online software components are listed under 1.4, “Online software
components” on page 1-13.

�� For more information about batch utilities used for general system-wide
maintenance and CA-IDMS database maintenance, (such as the ARCHIVE
JOURNAL utility statement), refer to CA-IDMS Utilities.

Information about compilers can be found in documentation about related products and
facilities. For example, information about the DDDL compiler can be found in the
CA-IDMS IDD DDDL Reference Guide. Information about IDMSDMLC, the COBOL
DML precompiler, can be found in the CA-IDMS DML Reference - COBOL.

For compilers and utilities that can run in both local mode or central version, keep in
mind that:

■ When you use central version services, you can use comprehensive CA-IDMS
database recovery facilities in cases where the job abends. When you are
updating the database, you generally should use central version services, unless
you have backed up or otherwise protected the database.

■ When you use local mode services, you vary offline areas that your job updates,
thus restricting other users from using or updating those database areas.

Local mode is therefore appropriate when data required by your job must not be
changed by other users while your job runs. You also can take advantage of local
mode services for jobs that do not need the locking and journaling services
provided under CA-IDMS central version.

Central version and local mode This table lists the batch compilers and utilities
that you can execute in either local mode or central version:

Chapter 1. Introduction 1-15

1.5 CA-IDMS batch compilers and utilities

Local mode only This table lists the batch compilers and utilities that you can
execute only in local mode:

Compiler or utility Description

ADSOBGEN CA-ADS dialog generator

ADSOBSYS CA-ADS batch environment setup utility

ADSOBTAT CA-ADS task application table maintenance utility

ADSORPTS CA-ADS reporter

ADSOBPLG CA-ADS/Batch print log utility

ADSOTRC1 CA-ADS/Batch trace utility

BCF Batch command facility

CULPRIT CA-CULPRIT report writer

IDMSDDDL DDDL compiler

IDMSDIRL Dictionary load utility

IDMSDMLA Assembler DML precompiler

IDMSDMLC COBOL DML precompiler

IDMSDMLP PL/I DML precompiler

IDMSDMLF FORTRAN DML precompiler

IDMSDMLR RPG DML precompiler

IDMSLOOK Load module print utility

IDMSRADM Relational database administration utility

IDMSRPTS Data dictionary reports utility

IDMSRSTC Restructure schema compare utility

IDMSCHEM Schema compiler

IDMSUBSC Subschema compiler

INSTALL STAMPS �1� SQL install stamp utility

RHDCMAP1 Map compiler

RHDCMPUT Map utility

RHDCSGEN DC/UCF system generation compiler

UPDATE STATISTICS �1� SQL update statistics utility

Note: �1� - Utility statement submitted through the batch command facility (BCF).

1-16 CA-IDMS System Operations

1.5 CA-IDMS batch compilers and utilities

Other utilities This table lists the batch compilers and utilities that bypass the
services of IDMSDBMS and, therefore, run independently of CA-IDMS local mode
and central version services:

Compiler or utility Description

ARCHIVE JOURNAL Journal offload utility

ARCHIVE LOG System log offload utility

BACKUP Backup utility

BUILD SQL index build utility

CLEANUP Logical delete utility

EXPAND PAGE Expand page utility

FASTLOAD Non-SQL database load utility

FORMAT Initialize utility

FIX JOURNAL Journal fix utility

FIX PAGE Database page fix utility

LOAD SQL database load utility

MAINTAIN INDEX Non-SQL index maintenance utility

PRINT INDEX Print index utility

PRINT JOURNAL Print journal utility

PRINT LOG Print log utility

PRINT PAGE Print database page utility

PRINT SPACE Space utilization utility

PUNCH Punch DMCL and database name table utility

RELOAD Non-SQL database reload utility

RESTORE Restore utility

RESTRUCTURE Restructure utility

RESTRUCTURE CONNECT Pointer connect utility

ROLLBACK Rollback utility

ROLLFORWARD Rollforward utility

UNLOAD Non-SQL database unload utility

UNLOCK Unlock areas utility

VALIDATE SQL database constraint validation utility

Note: All of these utlity statements are submitted through the batch command facility
(BCF).

Chapter 1. Introduction 1-17

1.5 CA-IDMS batch compilers and utilities

Compiler or utility Description

IDMSCALC CALC key utility

IDMSDBAN Database analysis utility

1-18 CA-IDMS System Operations

 Chapter 2. System Startup

2.1 Overview . 2-3
2.2 Preparatory steps . 2-4

2.2.1 Defining and generating the DC/UCF system 2-4
2.2.2 Defining dictionaries and databases . 2-4
2.2.3 Coding a #DCPARM macro . 2-6

2.3 System startup under OS/390 . 2-9
2.3.1 Step 1: Link edit the startup routine . 2-9
2.3.2 Step 2: Execute the startup routine 2-10

2.4 System startup under VSE/ESA . 2-16
2.4.1 Step 1: Create an RHDCPARM phase 2-16
2.4.2 Step 2: Code #DVFILE macros . 2-17

2.4.2.1 Format 1 #DVFILE macro . 2-21
2.4.2.2 Format 2 #DVFILE macro . 2-27
2.4.2.3 Format 3 #DVFILE macro . 2-32

2.4.3 Step 3: Create an RHDCFTAB module 2-32
2.4.4 Step 4: Execute the startup routine 2-33

2.5 System startup under VM/ESA . 2-41
2.5.1 Step 1: Assemble the #DCPARM macro 2-41
2.5.2 Step 2: Assemble the #SVCOPT macro 2-41
2.5.3 Step 3: Link edit the startup routine 2-42
2.5.4 Step 4: Execute the startup routine 2-43

2.6 System startup under BS2000/OSD . 2-44
2.6.1 Step 1: Customize RHDCPARM . 2-44
2.6.2 Step 2: Create an ENTER file . 2-44
2.6.3 Step 3: Update the FILE procedure 2-46
2.6.4 Step 4. Submit the job . 2-50

2.7 What happens during startup . 2-51
2.7.1 How the startup routine acquires storage 2-51
2.7.2 How the system is built . 2-54
2.7.3 The DC/UCF region/partition layout 2-59

2.8 Dynamically reloading nucleus modules 2-65

Chapter 2. System Startup 2-1

2-2 CA-IDMS System Operations

2.1 Overview

 2.1 Overview

In order to use a DC/UCF system, you need to start up the DC/UCF system after
performing a few preparatory steps. The DC/UCF startup routine creates the DC/UCF
run-time environment.

This chapter describes:

■ Preparatory steps required for all operating systems

■ Steps for starting a DC/UCF system under OS/390, VSE/ESA, VM/ESA, and
BS2000/OSD systems

■ What happens during DC/UCF system startup

■ How to reload nucleus modules at run time

Chapter 2. System Startup 2-3

2.2 Preparatory steps

 2.2 Preparatory steps

Before you can start up a DC/UCF system, you need to:

1. Define and generate the DC/UCF system

2. Define dictionaries and databases to be controlled by the DC/UCF system

3. Code a #DCPARM macro that describes the DC/UCF system to be started

2.2.1 Defining and generating the DC/UCF system

You define a DC/UCF system by using the DC/UCF system generation compiler.

You can define a system by copying and modifying an existing system (for example,
installation system 90). Alternatively, you can define a totally new system.

�� For detailed information about defining DC/UCF systems, refer to CA-IDMS System
Generation.

2.2.2 Defining dictionaries and databases

Data dictionaries and databases are defined by using CA-IDMS supplied compilers for:

■ Non-SQL schema and subschema definition

■ SQL database definition

■ Physical database definition

The table below lists the dictionary and database areas that you include in the DMCL
module used by the DC/UCF system under the central version.

�� For information on creating databases, refer to CA-IDMS Database Administration.

Area Purpose

DDLDML areas Contains definitions of DC/UCF systems, maps, dialogs,
source modules, and records. Each dictionary must have
its own DDLDML area.

DDLDCLOD areas Contains load modules associated with entities contained
in the DDLDML area; for example, map load modules
and subschema load modules.

Each dictionary that requires a unique load area must
have its own DDLDCLOD area.

2-4 CA-IDMS System Operations

2.2 Preparatory steps

Area Purpose

DDLCAT areas Contains definitions of physical databases accessible
from this run-time environment (segments, DMCLs,
database name tables, and so on); at sites with the SQL
option, contains definitions of SQL entities (tables,
constraints, indexes, and so on).

DDLCATX areas Contains indexes defined on entities stored in the
DDLCAT area. Each DDLCAT area must have its own
DDLCATX area.

DDLCATLOD areas Contains load modules associated with entities contained
in the DDLCAT area; for example DMCL load modules,
database name table load modules, and access modules
at sites with the SQL option. Each DDLCAT area must
have its own DDLCATLOD area.

DDLDCMSG area Stores messages for use at run time. All dictionaries in
a DC/UCF system share the same DDLDCMSG area.

DDLDCRUN area Contains run-time queue information used by
CA-supplied tools and online user programs.

DDLDCLOG area Stores the DC/UCF system log. The DDLDCLOG area
is required only if the system log is assigned to the
database.

DDLDCSCR area Contains run-time scratch information used by
CA-supplied tools and online user programs.

DDLSEC area Contains user and group definitions for security
enforcement.

User database areas Store user data.

Chapter 2. System Startup 2-5

2.2 Preparatory steps

2.2.3 Coding a #DCPARM macro

The #DCPARM macro describes the DC/UCF system to be started. It defines the
version number of the DC/UCF system, associates the system with the DMCL module,
and provides other setup information for the system.

 Syntax

��── macro-label #DCPARM ───�

 �─┬───┬────────────────────────────────�

├─ SYSTEM= ─┬─┬─ dc/ucf-version-number ─┬─┘

└─ DCSYST= ─┘ └─ 9� ← ──────────────────┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

└─ ,DMCLNAM= ─┬─ IDMSDMCL ← ───────┬─┘

└─ dmcl-module-name ─┘

 �─┬────────────────────────────────┬───�

└─ ,FREESTG= ─┬─ storage-size ─┬─┘

└─ 512 ← ────────┘

 �─┬──┬───────────────────────────────�

└─ ,RMAPSIZ= ─┬─ region-map-entry-count ─┬─┘

└─ 3� ← ───────────────────┘

 �─┬──────────────────────┬───�

└─ ,PROMPT= ─┬─ NO ← ─┬┘

├─ PAR ──┤

├─ SYS ──┤

└─ YES ──┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,REGION= ─┬─ startup-region-size ─┬─┘

└─ 7��� ← ──────────────┘

 �─┬────────────────────────┬───�

└─ ,PRTLOG= ─┬─ YES ← ─┬─┘

└─ NO ────┘

 �─┬───┬────────────────────────────────�

└─ ,XMPOOL= ─┬─ common-memory-pool-size ─┬┘

└─ 2 ← ─────────────────────┘

 �─┬───────────────────────────────┬──�

└─ ,MODULE=startup-module-name ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,MSGID= ─┬─ bs2���-message-id ─┬┘

└─ IDMS��� ───────────┘

 �─┬──┬─────────────────────────────────��

└─ ,MAXTSN=operating-system-task-number ─┘

2-6 CA-IDMS System Operations

2.2 Preparatory steps

 Parameters

SYSTEM/DCSYST
Gives the version number of the DC/UCF system to be started up. Specify either
SYSTEM or DCSYST, depending on the operating system in use:

■ OS/390, VSE/ESA, VM/ESA: SYSTEM

 ■ BS2000/OSD: DCSYST

The version number specified by dc/ucf-version-number identifies an executable
system defined by using the DC/UCF system generation compiler.

DMCLNAM
The name of the DMCL module to be used by the DC/UCF system. When you
start the DC/UCF system, the specified DMCL module must already be stored in
the DC/UCF load (core image) library.

FREESTG
The amount of storage, in K bytes, to be returned (freed) to the operating system
at DC/UCF startup time. The storage is freed for operating system use during
DC/UCF startup operations. FREESTG must specify a positive integer storage
amount.

For BS2000/OSD systems, FREESTG is the amount of storage in K bytes that
will be reserved in the global memory pool for system use. This includes the
space required for I/O buffers and the name manager.

RMAPSIZ
The number of entries to be allocated to the DC/UCF region map. The default
should satisfy most sites; however, if your site uses many optional features, (for
example, many line drivers), you may have to increase this value. Issue a DCMT
DISPLAY MEMORY MAP command to determine if the map displays all the
modules you think it should.

PROMPT
The type of specifications the operator can override at startup time. Information
about how operators enter override values at DC/UCF startup time is given in
CA-IDMS System Tasks and Operator Commands.

NO
Nothing; overrides are not allowed

PAR
System generation definitions

SYS
The system version number

YES
Both system generation definitions and the system version number

REGION
(BS2000/OSD systems) The amount of class 6 storage, in K bytes, that will be
requested during startup. Sufficient space must be left in the address space for use
by the operating system (class 5 storage). At startup time, DC/UCF issues the

Chapter 2. System Startup 2-7

2.2 Preparatory steps

'STORAGE RETURNED TO OPERATING SYSTEM' message to inform you
how much storage was left in the memory pool. When the value returned in this
message is high, it is a good idea to decrease the REGION parameter value.

PRTLOG
(BS2000/OSD systems) — Determines whether the PRINT of the LOGFILES
should be automatically initiated when logging on to sequential files.

XMPOOL
(BS2000/OSD systems) — The number of segments (64 K-byte blocks) to be
allocated for the common memory pool.

MODULE
(BS2000/OSD systems) — The name of the startup module. BS2KSTAR loads
the startup module in a memory pool.

MSGID
(BS2000/OSD systems) — The message-id that will be used when sending a
message to the operator's console. Message-id is a 7 character value defined to
the BS2000/OSD message file.

MAXTSN
(BS2000/OSD systems) — The number of operating system tasks to be used by
DC/UCF. Multitasking is only enabled when MAXTSN is greater than 1.
Operating-system-task-number is an integer in the range 1 through 8.

2-8 CA-IDMS System Operations

2.3 System startup under OS/390

2.3 System startup under OS/390

To start up DC/UCF on an OS/390 system, perform the following steps:

1. Link edit the startup routine, including modules required for the system.

2. Execute the startup routine.

2.3.1 Step 1: Link edit the startup routine

When you link edit the DC/UCF startup routine for an OS/390 system, you must
include:

■ The assembled #DCPARM macro object module (described earlier in this chapter)

■ The operating-system dependent modules appropriate to the operating system as
mentioned in the JCL below

■ The IDMSUSVC module (if no SVC is used)

To link edit the startup routine, use JCL statements based on the sample JCL
statements shown below.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 Startup routine

// EXEC ASMA9�

//ASM.SYSLIB DD DSN=idms.maclib,DISP=SHR

// DD DSN=sys1.maclib,DISP=SHR

 //ASM.SYSIN DD �

 #DCPARM macro

 END

//LKED.SYSLMOD DD DSN=idms.dba.loadlib,DISP=SHR

// DD DSN=idms.loadlib,DISP=SHR

//LKED.SYSIN DD

INCLUDE RHDCOESA << RHDCOMVS for MSP/EX

INCLUDE RHDCOMOC

INCLUDE RHDCOMWP

INCLUDE RHDCHPCS

INCLUDE RHDCACHE

INCLUDE WTOEXIT << User-write-to-operator exit

ENTRY STARTUP

NAME dcucfsys(R)

dcucfsys name assigned to the module containing the DC/UCF
startup routine

idms.dba.loadlib data set name of the CA-IDMS load library containing
the DMCL and database name table load modules

idms.loadlib database set name of the CA-IDMS load library

Chapter 2. System Startup 2-9

2.3 System startup under OS/390

idms.maclib data set name of the CA-IDMS macro library

sys1.maclib data set name of the system macro library

2.3.2 Step 2: Execute the startup routine

JCL to execute the DC/UCF startup routine must include definitions of all database
files that are not dynamically allocated and the terminal network.

�� For information about dynamic file allocation, refer to CA-IDMS Database
Administration.

The sample OS/390 JCL presented below lists all the files used in system startup.
These files could be allocated dynamically by including them in the DMCL used at
startup.

OS/390 DC/UCF Startup

2-10 CA-IDMS System Operations

2.3 System startup under OS/390

// EXEC PGM=dcucfsys,REGION=region-size

 //STEPLIB DD DSN=idms.dba.loadlib,DISP=SHR

 DD DSN=idms.loadlib,DISP=SHR

 //CDMSLIB DD DSN=idms.loadlib,DISP=SHR

// DD DSN=language.runtime.lib,DISP=SHR

//j1jrnl DD DSN=idms.j1jrnl,DISP=SHR

//j2jrnl DD DSN=idms.j2jrnl,DISP=SHR

//j3jrnl DD DSN=idms.j3jrnl,DISP=SHR

//j4jrnl DD DSN=idms.j4jrnl,DISP=SHR

//dcdml DD DSN=idms.system.ddldml,DISP=SHR

//dclod DD DSN=idms.system.ddldclod,DISP=SHR

//dccat DD DSN=idms.system.ddldccat,DISP=SHR

//dccatx DD DSN=idms.system.ddldcatx,DISP=SHR

//dccatl DD DSN=idms.system.ddlcatld,DISP=SHR

//secdd DD DSN=idms.sysuser.ddlsec,DISP=SHR

//dcmsg DD DSN=idms.sysmsg.ddldcmsg,DISP=SHR

//dclog DD DSN=idms.system.ddldclog,DISP=SHR

//dcrun DD DSN=idms.system.ddldclrun,DISP=SHR

//dcscr DD DSN=idms.system.ddldcscr,DISP=SHR

//sqldd DD DSN=idms.syssql.ddlcat,DISP=SHR

//sqllod DD DSN=idms.syssql.ddlcatld,DISP=SHR

//sqlxdd DD DSN=idms.syssql.ddlcatx,DISP=SHR

//dictdb DD DSN=idms.appldict.ddldml,DISP=SHR

//dloddb DD DSN=idms.appldict.ddldclod,DISP=SHR

//dirldb DD DSN=idms.sysdirl.ddldml,DISP=SHR

 //dirllod DD DSN=idms.sysdirl.ddldclod,DISP=SHR

//asfdml DD DSN=idms.asfdict.ddldml,DISP=SHR

//asflod DD DSN=idms.asfdict.ddldclod,DISP=SHR

 //asfdefn DD DSN=idms.asfdict.asfdefn,DISP=SHR

 //asfdata DD DSN=idms.asfdict.asfdata,DISP=SHR

 //empdemo DD DSN=idms.empdemo.empdemo,DISP=SHR

 //insdemo DD DSN=idms.empdemo.insdemo,DISP=SHR

 //orgdemo DD DSN=idms.empdemo.orgdemo,DISP=SHR

//empldemo DD DSN=idms.sqldemo.empldemo,DISP=SHR

//infodemo DD DSN=idms.sqldemo.infodemo,DISP=SHR

//indxdemo DD DSN=idms.sqldemo.indxdemo,DISP=SHR

//projdemo DD DSN=idms.projseg.projdemo,DISP=SHR

//userdb DD DSN=user.userdb,DISP=SHR

additional database file assignments, as necessary

//SYSOUT DD SYSOUT=A,

// DCB=(RECFM=VBA,LRECL=137,BLKSIZE=137�)

//idmsloga DD DSN=idms.syssnap,DISP=SHR << multitasking only

//SYSUDUMP DD SYSOUT=A

//sysctl DD DSN=idms.sysctl,DISP=SHR << optional if CA-IDMS SVC is used

teleprocessing network assignments, as necessary

 //SYSIDMS DD �

SYSIDMS parameters, as required

DC/UCF version number: You can use the PARM option of the EXEC statement to
override the DC/UCF version number specified in the #DCPARM macro as
shown:

PARM='S=dc/ucf-version-number'

where dc/ucf-version-number is the version number of the DC/UCF system that
is started.

OS/390 multitasking support: OS/390 multitasking can be enabled by using the
PARM option of the EXEC statement. For instructions, see Chapter 8,
“Extended Addressing and Multitasking.”

asfdata ddname of the ASF data (IDMSR-AREA2) area

Chapter 2. System Startup 2-11

2.3 System startup under OS/390

asfdefn ddname of the ASF data definition (IDMSR-AREA2)
area

asfdml ddname of the ASF dictionary definition (DDLDML)
area

asflod ddname of the ASF dictionary definition load
(DDLDCLOD) area

dccat ddname of the system dictionary catalog (DDLCAT)
area

dccatl ddname of the system dictionary catalog load
(DDLCATLOD) area

dccatx ddname of the system dictionary catalog index
(DDLCATX) area

dcdml ddname of the system dictionary definition (DDLDML)
area

dclod ddname of the system dictionary definition load
(DDLDCLOD) area

dclog ddname of the system log (DDLDCLOG) area

dcmsg ddname of the system message (DDLDCMSG) area

dcrun ddname of the system queue (DDLDCRUN) area

dcscr ddname of the system scratch (DDLDCSCR) area

dcucfsys name assigned at link edit time to the executable
module that starts up DC/UCF

dictdb ddname of the application dictionary definition area

dirldb ddname of the IDMSDIRL definition (DDLDML) area

dirllod ddname of the IDMSDIRL definition load
(DDLDCLOD) area

dloddb ddname of the application dictionary definition load
(DDLDCLOD) area

empdemo ddname of the EMP-DEMO-AREA area

empldemo ddname of the EMPLAREA area

idmsloga ddname of the first sequential log file

idms.appldict.ddldclod data set name of the application dictionary definition
load (DDLDCLOD) area

idms.appldict.ddldml data set name of the application dictionary definition
(DDLDML) area

idms.asfdict.asfdata data set name of the ASF data (IDMSR-AREA2) area

2-12 CA-IDMS System Operations

2.3 System startup under OS/390

idms.asfdict.asfdefn data set name of the ASF data definition
(IDMSR-AREA) area

idms.asfdict.ddldclod data set name of the ASF dictionary definition load
(DDLDCLOD) area

idms.asfdict.ddldml data set name of the ASF dictionary definition
(DDLDML) area

idms.empdemo.empdemo data set name of the EMP-DEMO-AREA area of the
Commonweather database

idms.empdemo.insdemo data set name of the INS-DEMO-AREA area of the
Commonweather database

idms.empdemo.orgdemo data set name of the ORG-DEMO-AREA area of the
Commonweather database

idms.loadlib data set name of the CA-IDMS load library

idms.dba.loadlib data set name of the load library containing the DMCL
and database name table modules

idms.j1jrnl/
idms.j4jrnl

data set name of the first through fourth disk journal
file

idms.projseg.projdemo data set name of the PROJAREA area of the
Commonweather (SQL-defined) database

idms.sqldemo.empldemo data set name of the EMPLAREA area of the
Commonweather (SQL-defined) database

idms.sqldemo.indxdemo data set name of the INDXAREA area of the
Commonweather (SQL-defined) database

idms.sqldemo.infodemo data set name of the INFOAREA area of the
Commonweather (SQL-defined) database

idms.sysctl data set name of the SYSCTL file

idms.sysdirl.ddldclod data set name of the IDMSDIRL definition load
(DDLDCLOD) area

idms.sysdirl.ddldml data set name of the IDMSDIRL definition (DDLDML)
area

idms.sysloc.ddlocscr data set name of the local mode system scratch
(SYSLOC.DDLOCSCR) area

idms.sysmsg.ddldcmsg data set name of the system message (DDLDCMSG)
area

idms.syssnap data set name of the sequential log file

idms.syssql.ddlcat data set name of the SQL catalog (DDLCAT) area

idms.syssql.ddlcatld data set name of the SQL catalog (DDLCATLOD) area

Chapter 2. System Startup 2-13

2.3 System startup under OS/390

idms.syssql.ddlcatx data set name of the SQL catalog index (DDLCATX)
area

idms.system.ddldccat data set name of the system dictionary catalog
(DDLCAT) area

idms.system.ddlcatld data set name of the system dictionary catalog load
(DDLCATLOD) area

idms.system.ddldcatx data set name of the system dictionary catalog index
(DDLCATX) area

idms.system.ddldclod data set name of the system dictionary definition load
(DDLDCLOD) area

idms.system.ddldclog data set name of the system log (DDLDCLOG) area

idms.system.ddldcrun data set name of the system queue (DDLDCRUN) area

idms.system.ddldcscr data set name of the system scratch (DDLDCSCR) area

idms.system.ddldml data set name of the system dictionary definition
(DDLDML) area

idms.sysuser.ddlsec data set name of the system user catalog
(SYSUSER.DDLSEC) area

indxdemo ddname of the INDXAREA area

infodemo ddname of the INFOAREA area

insdemo ddname of the INS-DEMO-AREA area

j1jrnl/j4jrnl ddname of the first through fourth disk journal file

language.runtime.lib data set name of the run-time support library for
COBOL, PL/I, and so on.

orgdemo ddname of the ORG-DEMO-AREA area

projdemo ddname of the PROJDEMO area

region-size size of the region in which the DC/UCF system is built;
this amount should include the FREESTG storage
reserved in the system #DCPARM macro

secdd ddname of the system user catalog
(SYSUSER.DDLSEC) area

sqldd ddname of the SQL catalog (DDLCAT) area

sqllod ddname of the SQL catalog load (DDLCATLOD) area

sqlxdd ddname of the SQL catalog index (DDLCATX) area

sysctl ddname of the SYSCTL file

userdb ddname of the user database or application dictionary
file

2-14 CA-IDMS System Operations

2.3 System startup under OS/390

user.userdb data set name of the user database or application
dictionary

Chapter 2. System Startup 2-15

2.4 System startup under VSE/ESA

2.4 System startup under VSE/ESA

To start up DC/UCF on a VSE/ESA system, perform the following steps:

1. Create an RHDCPARM phase to describe the DC/UCF system by assembling and
link editing the system #DCPARM macro. RHDCPARM will be loaded at system
startup time.

2. Code #DVFILE macros to describe device-dependent characteristics of sequential
files.

3. Create an RHDCFTAB phase to make #DVFILE macro definitions available to
the system.

4. Execute the startup routine.

2.4.1 Step 1: Create an RHDCPARM phase

To create the RHDCPARM phase:

1. Code a #DCPARM macro as described earlier in this chapter, in 2.2.3, “Coding a
#DCPARM macro” on page 2-6.

2. Assemble and link edit the #DCPARM macro. Use RHDCPARM as the ENTRY
name.

�� Any modifications to CA-IDMS load libraries should be applied using MSHP.
For assembly and link edit instructions using MSHP, refer to CA-IDMS
Installation and Maintenance Guide - VSE/ESA.

3. Save the resulting phase in the core-image library as member RHDCPARM.

To assemble and link edit #DCPARM, use JCL statements based on the sample JCL
statements shown below.

 VSE/ESA RHDCPARM

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE RHDCPARM,�,NOAUTO

// EXEC ASMA9�

 DCPARM macro

 END

/�

 ENTRY RHDCPARM

// EXEC LNKEDT

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

2-16 CA-IDMS System Operations

2.4 System startup under VSE/ESA

idmslib filename of the file containing CA-IDMS modules

idms.library file ID associated with the file containing CA-IDMS
modules

nnnnnn volume serial number of the library

ssss starting track (CKD) or block (FBA) of disk extent

2.4.2 Step 2: Code #DVFILE macros

You code #DVFILE macros to describe sequential files to a VSE/ESA system.
Sample file definitions for a VSE/ESA system follow. You need to code a #DVFILE
macro for each of the following types of files:

■ Batch simulator files for use by the DC/UCF batch simulator. At system
generation time, a batch simulator file is defined by a LINE statement that
specifies:

– TYPE IS S3270Q

– INPUT DDNAME IS filename

– OUTPUT DDNAME IS filename

■ SYSIN/SYSOUT files for use in handling input and output data. At system
generation time, a SYSIN/SYSOUT file is defined by a LINE statement that
specifies:

 – TYPE INOUTL

– INPUT DDNAME filename

– OUTPUT DDNAME filename

■ Sequential log files for all log files assigned to sequential files or devices. At
system generation time, use of a sequential log file is determined by the LOG
parameter of the SYSTEM statement.

The table below describes the three formats for the #DVFILE macro. Format 1 is
recommended for all files for which a DTF does not need to be manually coded.
Syntax for formats 1, 2, and 3 of #DVFILE are presented below, after the sample
VSE/ESA file definitions.

Depending on the #DVFILE format used for a file, you also may need to code an IBM
DTF (define-the-file) macro for the file. Cases where a DTF macro must be manually
coded are noted in this chapter.

Format 1: The table below describes #DVFILE format 1.

Chapter 2. System Startup 2-17

2.4 System startup under VSE/ESA

Format 2: The table below describes #DVFILE format 2.

Format 3: The table below describes #DVFILE format 3.

DC/UCF system generation statements: The log, sysin, sysout, and simulator
file assignments used at run time are determined by system generation statements.

Files defined Usage considerations

 ■ Batch simulator
input files

 ■ SYSIN/SYSOUT
files

Format 1 is recommended for batch simulator input and
SYSIN files. Format 1 #DVFILE:

■ Automatically generates an IBM DTF (define-the-file)
macro for the specified file

■ Provides extensive verification

Files defined Usage considerations

 ■ Batch simulator
input/output files

 ■ Sequential log
files

 ■ SYSIN/SYSOUT
files

Format 2 is recommended when the DTF macro must be
coded separately. Format 2 #DVFILE:

■ Does not generate a DTF macro for the file

■ Provides limited verification

Files defined Usage considerations

All files (#DVFILE END) Signals the end of the source file to be
assembled into the RHDCFTAB phase.

2-18 CA-IDMS System Operations

2.4 System startup under VSE/ESA

VSE/ESA DC/UCF system generation statements

 ���

 � SEQUENTIAL LOG FILES �

 ���

 SYSTEM 88

LOG FILE1 IS LGDD1 COUNT IS 1���

LOG FILE2 IS LGDD2.

 ���

 � SYSIN/SYSOUT FILES �

 ���

 LINE LNA

TYPE IS INOUTL

INPUT DDNAME IS SYSIN1

OUTPUT DDNAME IS SYSOUT1.

 PTERM PTA1

TYPE IS INOUTT

PAGE LENGTH IS 24

MAXIMUM ERRORS IS 3.

 LTERM LTA1.

 ���

 � BATCH SIMULATOR FILES �

 ���

 LINE LNB

TYPE IS S327�Q

INPUT DDNAME IS SIMIN1

OUTPUT DDNAME IS SIMOUT1.

 PTERM PTB1

TYPE IS S3278

MODEL IS 2.

 LTERM LTB1.

RHDCFTAB source file: Files defined in the RHDCFTAB module can be named
in DC/UCF system generation statements (see above).

Chapter 2. System Startup 2-19

2.4 System startup under VSE/ESA

VSE/ESA RHDCFTAB source file

 ���

 � LOG FILE ASSIGNED TO A PRINTER �

 ���

 #DVFILE FILENAM=LGDD1, X

 DEVTYPE=PR, X

 BLKSIZE=133, X

 DTFNAME=LGDD1

 LGDD1 DTFPR BLKSIZE=132, X

 CTLCHR=ASA, X

 DEVADDR=SYS�27, X

 DEVICE=14�3, X

 IOAREA1=BUFF1, X

 RECFORM=FIXUNB

 ���

 � LOG FILE ASSIGNED TO A TAPE UNIT �

 ���

 #DVFILE FILENAM=LGDD2, X

 DEVTYPE=MT, X

 TYPEFLE=OUTPUT, X

 BLKSIZE=133, X

 DTFNAME=LDGG2

 LGDD2 DTFMT DEVADDR=SYS�28, X

 IOAREA1=BUFF4, X

 BLKSIZE=133, X

 RECFORM=FIXUNB, X

 TYPEFLE=OUTPUT, X

 FILABL=NO, X

 ERREXT=YES, X

 ERROPT=ERRADDR

 ���

 � LOG FILE ASSIGNED TO A SEQUENTIAL DISK DATA SET �

 ���

 #DVFILE FILENAM=LGDD21,DEVADDR=SYS�7� X

 DEVTYPE=SD,DEVICE=335�, X

 BLKSIZE=129,RECSIZE=121,RECFORM=FIXBLK X

 TYPEFLE=OUTPUT

 LGDD1 DTFSD BLKSIZE=129,RECSIZE=121, X

 RECFORM=FIXBLK,DEVADDR=SYS�7�, X

 TYPEFILE=OUTPUT

 ���

 � SYSIN FILE ASSIGNED TO A CARD READER �

 ���

 #DVFILE FILENAM=SYSIN1, X

 DEVTYPE=CD, X

 DEVADDR=SYS�25, X

 BLKSIZE=8�, X

 DEVICE=25�1

 ���

 � SYSOUT FILE ASSIGNED TO A PRINTER �

 ���

 #DVFILE FILNAM=SYSOUT1, X

 DEVTYPE=PR, X

 BLKSIZE=137, X

2-20 CA-IDMS System Operations

2.4 System startup under VSE/ESA

 RECFORM=VARUNB, X

 DTFNAME=SYSOUT1

 SYSOUT1 DTFPR BLKSIZE=137, X

 CTLCHR=ASA, X

 IOAREA1=BUFF1, X

 DEVADDR=SYS�26, X

 WORKA=YES, X

 RECFORM=VARUNB

 ���

 � SIMULATOR INPUT FILE ASSIGNED TO A CARD READER �

 ���

 #DVFILE DEVTYPE=CD, X

 FILENAM=SIMIN1, X

 DEVICE=25�1, X

 DEVADDR=SYS�29, X

 BLKSIZE=8�

 ���

 � SIMULATOR OUTPUT ASSIGNED TO A PRINTER �

 ���

 #DVFILE DEVTYPE=PR, X

 FILENAM=SIMOUT1, X

 DTFNAME=SIMOUT1, X

 BLKSIZE=133

 SIMOUT1 DTFPR BLKSIZE=133, X

 CTLCHR=ASA, X

 DEVADDR=SYS�2�, X

 IOAREA1=BUFF6

 ���

 � END OF RHDCFTAB �

 ���

 #DVFILE END

 END

2.4.2.1 Format 1 #DVFILE macro

Format 1 #DVFILE macros are recommended when you define batch simulator input
files and SYSIN files. This format automatically generates a DTF macro for the
specified file.

The table below gives considerations for coding format 1 #DVFILE macros.

File type #DVFILE definition

 ■ Batch simulator
input files

 ■ SYSIN files

Define as input files with 80-character, fixed-length records.
For example:

BLKSIZE=8�,TYPEFLE=INPUT,RECFORM=FIXUNB

Chapter 2. System Startup 2-21

2.4 System startup under VSE/ESA

For SYSOUT files assigned to printers and any other files requiring special DTF
parameters, use format 2 of the #DVFILE macro (described later in this chapter).

Format 1 syntax

��── #DVFILE FILENAM=filename ──�

 �── ,DEVTYPE= ─┬─ CD ─┬──�

├─ DI ─┤

├─ MT ─┤

├─ PR ─┤

└─ SD ─┘

 �───,DEVADDR= ─┬─ SYSnnn ─┬──�

├─ SYSIPT ─┤

├─ SYSLST ─┤

├─ SYSPCH ─┤

├─ SYSRDR ─┤

└─ SYSLOG ─┘

 �─┬───────────────────────┬──�

└─ ,BLKSIZE=block-size ─┘

 �─┬────────────────────────┬───�

└─ ,RECSIZE=record-size ─┘

 �─┬─────────────────────────┬──�

└─ ,DEVICE=device-number ─┘

 �─┬──────────────────────────┬───�

└─ ,TYPEFLE= ─┬─ INPUT ──┬─┘

└─ OUTPUT ─┘

 �─┬────────────────────────────┬───�

└─ ,RECFORM= ─┬─ FIXBLK ───┬─┘

└─ FIXUNB ← ─┘

 �─┬───────────────────────┬──�

└─ ,FILABL= ─┬─ NO ← ─┬─┘

├─ STD ──┤

└─ NSTD ─┘

 �─┬──────────────────────────┬───�

└─ ,LABADDR=label-address ─┘

 �─┬─────────────────────────┬──��

└─ ,REWIND= ─┬─ UNLOAD ─┬─┘

└─ NORWD ──┘

Format 1 parameters

File type #DVFILE definition

 ■ SYSOUT files Define as output files with 133-character, variable-length
records.

For variable length, add 4 bytes to the blocksize (in this
case, 133 + 4 = 137). For example:

BLKSIZE=137,RECFORM=VARUNB,TYPEFLE=OUTPUT

2-22 CA-IDMS System Operations

2.4 System startup under VSE/ESA

FILENAM
Specifies the name of the file. The specified file name in the #DVFILE macro
must be identical to the file name specified for the file at system generation time.

DEVTYPE
Specifies the device type for the named file:

■ CD — Card reader/punch

■ DI — Device independent (system logical unit)

■ MT — Magnetic tape

■ PR — Printer

■ SD — Sequential disk

Considerations: Valid values for remaining clauses depend on the device type
specified for DEVTYPE. Valid #DVFILE specifications for remaining clauses are
presented following these parameter descriptions.

DEVADDR
Specifies the symbolic unit to be assigned to the named file:

■ SYSnnn — For variable devices, assigned at run time in JCL for the job

■ SYSIPT — For card reader devices

■ SYSLST — For print devices

■ SYSPCH — For card punch devices

■ SYSRDR — For card reader devices (job control)

■ SYSLOG — For terminal devices (operator communication)

BLKSIZE
Specifies the block size, in bytes, for the named file. Not valid for DI devices.

Required for:

 ■ CD devices

 ■ MT devices

 ■ PR devices

 ■ SD devices

RECSIZE
Specifies the record size, in bytes, for the named file.

Required for:

 ■ DI devices

■ MT fixed-block files

■ SD fixed-block files

Chapter 2. System Startup 2-23

2.4 System startup under VSE/ESA

DEVICE
Specifies the device on which the named file is located. Not valid for MT and DI
device types.

For valid device-number values, see the appropriate operating system supervisor
and I/O macro documentation.

Required for:

 ■ CD devices

 ■ PR devices

 ■ SD devices

TYPEFLE
Specifies whether the named file is an input file or an output file (not valid for DI
devices):

■ CD devices: INPUT or OUTPUT

■ MT devices: INPUT

■ PR devices: OUTPUT or INPUT

■ SD devices: INPUT or OUTPUT

RECFORM
Specifies the record format for the named file (not valid for DI devices):

■ FIXBLK — Fixed blocked

■ FIXUNB — Fixed unblocked

FILABL
(MT devices) Specifies the label type for tape file:

 ■ NO
 — No labels.

■ STD — Standard labels.

■ NSTD — Nonstandard labels. You also must specify the LABADDR
parameter (described below).

LABADDR
(MT and SD devices) Specifies the entry point name of the routine used to
process user labels.

REWIND
(MT devices) Specifies the disposition of the tape file:

■ UNLOAD — The tape is rewound and unloaded.

■ NORWD — The tape is not rewound.

If the REWIND parameter is omitted, the tape is rewound but not unloaded.

Valid values for CD: This table lists valid #DVFILE specifications for the CD
type.

2-24 CA-IDMS System Operations

2.4 System startup under VSE/ESA

Valid values for DI: This table lists valid #DVFILE specifications for the DI type.

Valid values for MT: This table lists valid #DVFILE specifications for the MT
type.

Parameter Valid values

DEVADDR SYSnnn
SYSIPT
SYSPCH
SYSRDR

BLKSIZE 80

RECSIZE --

DEVICE A device number is required

TYPEFLE INPUT or OUTPUT

RECFORM FIXUNB

FILABL --

LABADDR --

REWIND --

Parameter Valid values

DEVADDR SYSIPT
SYSLST
SYSPCH
SYSRDR

BLKSIZE --

RECSIZE ■ 80 for SYSOPT, SYSRDR units

■ 81 for SYSPCH units

■ 121 for SYSLST units

DEVICE --

TYPEFLE --

RECFORM --

FILABL --

LABADDR --

REWIND --

Chapter 2. System Startup 2-25

2.4 System startup under VSE/ESA

Valid values for PR: This table lists valid #DVFILE specifications for the PR type.

Parameter Valid values

DEVADDR SYSnnn
SYSIPT
SYSLST
SYSPCH
SYSRDR

BLKSIZE Input files:

 ■ 80

■ A multiple of 80 for fixed-block files

Output files:

 ■ 121

■ A multiple of 121 for fixed-block files

RECSIZE ■ 80 for input files

■ 121 for output files

DEVICE --

TYPEFLE INPUT or OUTPUT

RECFORM FIXUNB or FIXBLK

FILABL NO, STD, or

LABADDR Entry point name

REWIND UNLOAD or NORWD

Parameter Valid values

DEVADDR SYSnnn
SYSLST
SYSLOG

BLKSIZE 121

RECSIZE --

DEVICE A device number is required

TYPEFLE OUTPUT

RECFORM FIXUNB

FILABL --

LABADDR --

REWIND --

2-26 CA-IDMS System Operations

2.4 System startup under VSE/ESA

Valid values for SD: This table lists valid #DVFILE specifications for the PR type.

Parameter Valid values

DEVADDR SYSnnn

BLKSIZE Input files:

 ■ 80

■ A multiple of 80 for fixed-block files

Output files:

 ■ 129

■ 8 plus a multiple of 121 for fixed-block files

RECSIZE ■ 80 for input files

■ 121 for output files

DEVICE A device number is required

TYPEFLE INPUT or OUTPUT

RECFORM FIXUNB or FIXBLK

FILABL --

LABADDR Entry point name

REWIND --

2.4.2.2 Format 2 #DVFILE macro

Format 2 #DVFILE macros must be coded for a file whenever the file's DTF macro
must be manually coded. Format 2 is typically used for sequential output files:

■ Batch simulator output files

 ■ SYSOUT files

■ Sequential log files

Format 2 considerations: The table below gives considerations for coding format
2 #DVFILE macros:

Chapter 2. System Startup 2-27

2.4 System startup under VSE/ESA

DTF macro considerations: The DTF macro you code for a file must
immediately follow the associated #DVFILE macro. The following considerations
apply when coding a DTF macro:

■ If the file format is fixed blocked or variable blocked/unblocked, the DTF macro
must specify WORKA=YES.

■ If error exit option ERROPT=ERRADR applies to the file being defined, this
specification must be included in the DTF macro for the file. For details, refer to
the operating system supervisor and I/O macros documentation.

File type Macro definitions

 ■ Batch simulator
input files

■ SYSIN files

 ■ #DVFILE macro:

Define as input files with 80-character, fixed-length records.
For example:

BLKSIZE=8�,TYPEFLE=INPUT,RECFORM=FIXUNB

 ■ DTF macro:

Specify EOFADDR=EORADDR for all input files.

 ■ Batch simulator
output files

 ■ Sequential log
files

(Define each
sequential log file
in its own
#DVFILE macro)

 ■ #DVFILE macro:

Define as output files with 133-character, fixed-length
records. For example:

BLKSIZE=133,RECFORM=FIXUNB,TYPEFLE=OUTPUT

 ■ DTF macro:

For files assigned to printers, specify CTLCHR=ASA.

 ■ SYSOUT files ■ #DVFILE macro:

Define as output files with 133-character, variable-length
records.

To accommodate variable lengths, add 4 bytes to the
blocksize (in this case, 133 + 4 = 137). For example:

BLKSIZE=137,RECFORM=VARUNB,TYPEFLE=OUTPUT

 ■ DTF macro:

For files assigned to printers, specify CTLCHR=ASA.

2-28 CA-IDMS System Operations

2.4 System startup under VSE/ESA

Format 2 syntax

��── #DVFILE FILENAM=filename ──�

 �── ,DEVTYPE= ─┬─ CD ─┬──�

├─ DI ─┤

├─ MT ─┤

├─ PR ─┤

└─ SD ─┘

 ┌─────────────────────────────┐

 �─↓──┬─ ,BLKSIZE=block-size ──┬─┴──�

└─ ,RECSIZE=record-size ─┘

 �─┬───────────────────────────┬──�

└─ ,DFTNAME=dft-macro-name ─┘

 �─┬──────────────────────────┬───�

└─ ,TYPEFLE= ─┬─ INPUT ──┬─┘

└─ OUTPUT ─┘

 �─┬────────────────────────────┬───��

└─ ,RECFORM= ─┬─ FIXUNB ← ─┬─┘

├─ FIXBLK ───┤

├─ VARUNB ───┤

└─ VARBLK ───┘

Format 2 parameters

FILENAM
Specifies the name of the file. The specified file name in the #DVFILE macro
must be identical to the file name specified for the file at system generation time.

DEVTYPE
Specifies the device type for the named file:

■ CD — Card reader/punch

■ DI — Device independent (system logical unit)

■ MT — Magnetic tape

■ PR — Printer

■ SD — Sequential disk

Considerations: Valid values for remaining clauses depend on the device type
specified for DEVTYPE. Valid #DVFILE specifications for different device types
follow these parameter descriptions.

BLKSIZE
Specifies the block size, in bytes, for the named file. Not valid for DI devices.
For valid block-size values, see operating system supervisor and I/O macro
documentation.

Required for:

 ■ CD devices

 ■ MT devices

 ■ PR devices

Chapter 2. System Startup 2-29

2.4 System startup under VSE/ESA

 ■ SD devices

RECSIZE
Specifies the record size, in bytes, for the named file. For valid record-size
values, see operating system supervisor and I/O macro documentation.

Required for:

 ■ DI devices

■ MT fixed-block files

■ SD fixed-block files

DTFNAME
Specifies the name of the user-coded DTF macro. For DTF macro coding
instructions, see operating system supervisor and I/O documentation.

TYPEFLE
Specifies whether the named file is an input file or an output file Not valid for DI
devices.

Default values:

■ CD devices: INPUT or OUTPUT

■ MT devices: INPUT or OUTPUT

■ PR devices: OUTPUT

■ SD devices: INPUT or OUTPUT

RECFORM
Specifies the record format for the named file (not valid for DI devices):

■ FIXUNB — Fixed unblocked.

■ FIXBLK — Fixed blocked. The DTF macro for the file must specify
WORKA=YES.

■ VARUNB — Variable unblocked. The DTF macro for the file must specify
WORKA=YES.

■ VARBLK — Variable blocked. The DTF macro for the file must specify
WORKA=YES.

Valid values for CD: This table lists valid #DVFILE specifications for the CD
type.

Parameter Valid values

BLKSIZE A block must be specified

RECSIZE --

DTFNAME DTF macro name (when DTF macro is hand-coded)

TYPEFLE INPUT or OUTPUT

2-30 CA-IDMS System Operations

2.4 System startup under VSE/ESA

Valid values for DI: This table lists valid #DVFILE specifications for the DI type.

Valid values for MT: This table lists valid #DVFILE specifications for the MT
type.

Valid values for PR: This table lists valid #DVFILE specifications for the PR type.

Valid values for SD: This table lists valid #DVFILE specifications for the SD type.

Parameter Valid values

RECFORM FIXUNB or VARUNB

Parameter Valid values

BLKSIZE --

RECSIZE A block must be specified

DTFNAME DTF macro name (when DTF macro is hand-coded)

TYPEFLE --

RECFORM --

Parameter Valid values

BLKSIZE A block must be specified

RECSIZE A record size must be specified only for fixed un-blocked devices

DTFNAME DTF macro name (when DTF macro is hand-coded)

TYPEFLE INPUT or OUTPUT

RECFORM FIXUNB, FIXBLK, VARUNB, or VARBLK

Parameter Valid values

BLKSIZE A block must be specified

RECSIZE --

DTFNAME DTF macro name (when DTF macro is hand-coded)

TYPEFLE OUTPUT

RECFORM FIXUNB or VARUNB

Parameter Valid values

BLKSIZE A block must be specified

Chapter 2. System Startup 2-31

2.4 System startup under VSE/ESA

Parameter Valid values

RECSIZE A record size must be specified only for fixed un-blocked devices

DTFNAME DTF macro name (when DTF macro is hand-coded)

TYPEFLE INPUT or OUTPUT

RECFORM FIXUNB, FIXBLK, VARUNB, or VARBLK

2.4.2.3 Format 3 #DVFILE macro

Format 3 of the #DVFILE macro indicates the end of the #DVFILE macro calls. This
macro must be the last macro in the source file for RHDCFTAB. #DVFILE END
does not replace the Assembler END, which must be coded as the last statement in the
source file.

��── #DVFILE END ───��

2.4.3 Step 3: Create an RHDCFTAB module

You assemble and link edit an RHDCFTAB module to a load library to make
VSE/ESA file definitions in #DVFILE macros available at run time. To create the
RHDCFTAB module:

1. Assemble and link-edit #DVFILE macros along with any manually coded DTF
macros.

2. Save the resulting phase in the load library as member RHDCFTAB.

�� Modifications to CA-IDMS load libraries should be applied using MSHP. For
instructions on how to assemble and link-edit a module using MSHP, refer to
CA-IDMS Installation and Maintenance Guide - VSE/ESA.

To assemble and catalog #RHDCFTAB, use JCL statements based on the appropriate
sample JCL statements shown below.

VSE/ESA RHDCFTAB assembly and link edit

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE RHDCFTAB,�,NOAUTO

// EXEC ASMA9�

#DVFILE macros and DTF macros

 END

 /�

 ENTRY RHDCFTAB

// EXEC LNKEDT

2-32 CA-IDMS System Operations

2.4 System startup under VSE/ESA

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file ID associated with the file containing CA-IDMS
modules

nnnnnn volume serial number of the library

ssss starting track (CKD) or block (FBA) of disk extent

2.4.4 Step 4: Execute the startup routine

JCL to execute the DC/UCF startup routine must include definitions of all user
database files and the terminal network. To execute the DC/UCF system, use JCL
statements based on the sample JCL statements shown below.

VSE/ESA DC/UCF Startup

// OPTION LOG

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// EXEC PROC=IDMSLBLS

/�

Input SYSIDMS parameters, as necessary

�Additional database file assignments, as necessary

�Additional teleprocessing network definitions, as necessary

�Additional journal file assignments, as necessary

// EXEC IDMSDC,SIZE=4�K

The IDMSLBLS procedure: IDMSLBLS is a procedure provided during a
CA-IDMS VSE/ESA installation. It contains file definitions for the CA-IDMS
components listed below:

 ■ Dictionaries

 ■ Sample databases

■ Disk journal files

 ■ SYSIDMS file

IDMSLBLS Name of the procedure provided at installation that
contains the file definitions for CA-IDMS dictionary,
databases, disk journal files, the SYSCTL file, and
SYSIDMS parameter file.

�� A complete listing of IDMSLBLS appears below.

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

Chapter 2. System Startup 2-33

2.4 System startup under VSE/ESA

 ■ SYSCTL file

Tailor the IDMSLBLS procedure to reflect the filenames and definitions at your site
and include it in VSE/ESA JCL job streams.

2-34 CA-IDMS System Operations

2.4 System startup under VSE/ESA

VSE/ESA IDMSLBLS procedure

� -------- LIBDEFS --------

// LIBDEF �,SEARCH=idmslib.sublib

// LIBDEF �,CATALOG=user.sublib

/� ------------------------- LABELS -------------------------

// DLBL idmslib,'idms.library',2�99/365

// EXTENT ,nnnnnn,,,ssss,15��

// DLBL dccat,'idms.system.dccat',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,31

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatl,'idms.system.dccatlod',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dccatx,'idms.system.dccatx',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcdml,'idms.system.ddldml',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,1�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclod,'idms.system.ddldclod',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,21

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dclog,'idms.system.ddldclog',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,4�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcrun,'idms.system.ddldcrun',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,68

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcscr,'idms.system.ddldcscr',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,135

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dcmsg,'idms.sysmsg.ddldcmsg',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirldb,'idms.sysdirl.ddldml',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dirllod,'idms.sysdirl.ddldclod',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empdemo,'idms.empdemo1',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL insdemo,'idms.insdemo1',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL orgdemo,'idms.orgdemo1',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL empldem,'idms.sqldemo.empldemo',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,11

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL infodem,'idms.sqldemo.infodemo',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL projdem,'idms.projseg.projdemo',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

Chapter 2. System Startup 2-35

2.4 System startup under VSE/ESA

// DLBL indxdem,'idms.sqldemo.indxdemo',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,6

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sysctl,'idms.sysctl',2�99/365,SD

// EXTENT SYSnnn,nnnnnn,,,ssss,2

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL secdd,'idms.sysuser.ddlsec',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dictdb,'idms.appldict.ddldml',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL dloddb,'idms.appldict.ddldclod',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqldd,'idms.syssql.ddlcat',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,1�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqllod,'idms.syssql.ddlcatl',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,51

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL sqlxdd,'idms.syssql.ddlcatx',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,26

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdml,'idms.asfdict.ddldml',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asflod,'idms.asfdict.asflod',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,4�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdata,'idms.asfdict.asfdata',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,2�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL asfdefn,'idms.asfdict.asfdefn',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,1�1

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j1jrnl,'idms.j1jrnl',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j2jrnl,'idms.j2jrnl',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j3jrnl,'idms.j3jrnl',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL j4jrnl,'idms.j4jrnl',2�99/365,DA

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS,'#SYSIPT',�,SD

/+

/�

asfdata Filename of the ASF data (ASFDATA) area

asfdefn Filename of the ASF data definition area

2-36 CA-IDMS System Operations

2.4 System startup under VSE/ESA

asfdml Filename of the ASF dictionary definition (DDLDML)
area

asflod Filename of the ASF dictionary definition load
(ASFLOD) area

dccat Filename of the system dictionary catalog (DDLCAT)
area

dccatl Filename of the system dictionary catalog load
(DDLCATLOD) area

dccatx Filename of the system dictionary catalog index
(DDLCATX) area

dcdml Filename of the system dictionary definition
(DDLDML) area

dclod Filename of the system dictionary definition load
(DDLDCLOD) area

dclog Filename of the system log area (DDLDCLOG) area

dclscr Filename of the local mode system scratch
(DDLOCSCR) area

dcmsg Filename of the system message (DDLDCMSG) area

dcrun Filename of the system queue (DDLDCRUN) area

dcscr Filename of the system scratch (DDLDCSCR) area

dictdb Filename of the application dictionary definition area

dirldb Filename of the IDMSDIRL definition (DDLDML) area

dirllod Filename of the IDMSDIRL definition load
(DDLDCLOD) area

dloddb Filename of the application dictionary definition load
area

empdemo Filename of the EMPDEMO area

empldem Filename of the EMPLDEMO area

idms.appldict.ddldclod File-ID of the application dictionary definition load
(DDLDCLOD) area

idms.appldict.ddldml File-ID of the application dictionary definition
(DDLDML) area

idms.asfdict.asfdata File-ID of the ASF data area (ASFDATA) area

idms.asfdict.asfdefn File-ID of the ASF data definition area (ASFDEFN)
area

idms.asfdict.ddldml File-ID of the ASF dictionary definition (DDLDML)
area

Chapter 2. System Startup 2-37

2.4 System startup under VSE/ESA

idms.asfdict.asflod File-ID of the ASF dictionary definition load
(ASFLOD) area

idms.empdemo1 File-ID of the EMPDEMO area

idms.insdemo1 File-ID of the INSDEMO area

idms.j1jrnl File-ID of the first disk journal file

idms.j2jrnl File-ID of the second disk journal file

idms.j3jrnl File-ID of the third disk journal file

idmslib Filename of the file containing CA-IDMS modules

idmslib.sublib Name of the sublibrary within the library containing
CA-IDMS modules

idms.library File-ID associated with the file containing CA-IDMS
modules

idms.orgdemo1 File-ID of the ORDDEMO area

idms.projseg.projdemo File-ID of the PROJDEMO area

idms.sqldemo.empldemo File-ID of the EMPLDEMO area

idms.sqldemo.indxdemo File-ID of the INDXDEMO area

idms.sqldemo.infodemo File-ID of the INFODEMO area

idms.sysctl File-ID of the SYSCTL file

idms.sysdirl.ddldml File-ID of the IDMSDIRL definition (DDLDML) area

idms.sysdirl.dirllod File-ID of the IDMSDIRL definition load
(DDLDCLOD) area

idms.sysloc.ddlocscr File-ID of the local mode system scratch (DDLOCSCR)
area

idms.sysmsg.ddldcmsg File-ID of the system message (DDLDCMSG) area

idms.syssql.ddlcat File-ID of the SQL catalog (DDLCAT) area

idms.syssql.ddlcatl File-ID of SQL catalog load (DDLCATLOD) area

idms.syssql.ddlcatx File-ID of the SQL catalog index (DDLCATX) area

idms.system.dccat File-ID of the system dictionary catalog (DDLCAT)
area

idms.system.dccatlod File-ID of the system dictionary catalog load
(DDLCATLOD) area

idms.system.dccatx File-ID of the system dictionary catalog index
(DDLCATX) area

idms.system.ddldclod File-ID of the system dictionary definition load
(DDLDCLOD) area

2-38 CA-IDMS System Operations

2.4 System startup under VSE/ESA

Startup option overrides: You can override certain #DCPARM startup options by
specifying these overrides in the PARM parameter of the EXEC IDMSDC statement of
the startup routine:

idms.system.ddldclog File-ID of the system log (DDLDCLOG) area

idms.system.ddldcrun File-ID of the system queue (DDLDCRUN) area

idms.system.ddldcscr File-ID of the system scratch (DDLDCSCR) area

idms.system.ddldml File-ID of the system dictionary definition (DDLDML)
area

idms.sysuser.ddlsec File-ID of the system user catalog (DDLSEC) area

indxdem Filename of the INDXDEMO area

infodem Filename of the INFODEMO area

insdemo Filename of the INSDEMO area

j1jrnl Filename of the first disk journal file

j2jrnl Filename of the second disk journal file

j3jrnl Filename of the third disk journal file

nnnnnn Volume serial identifier of appropriate disk volume

orgdemo Filename of the ORGDEMO area

projdem Filename of the PROJDEMO area

secdd Filename of the system user catalog (DDLSEC) area

sqldd Filename of the SQL catalog (DDLCAT) area

sqllod Filename of the SQL catalog load (DDLCATLOD) area

sqlxdd Filename of the SQL catalog index (DDLCATX) area

ssss Starting track (CKD) or block (FBA) of disk extent

sysctl Filename of the SYSCTL file

SYSnnn Logical unit of the volume for which the extent is
effective

user.sublib Name of the sublibrary within the library containing
user modules

#DCPARM parameter EXEC IDMSDC PARM

SYSTEM (DC/UCF version number) S=dc/ucf-version-number

Chapter 2. System Startup 2-39

2.4 System startup under VSE/ESA

In the example below, the EXEC IDMSDC statement includes PARM options that
request the GETVIS VSE/ESA storage allocation technique and that override the
DMCL to be used by the DC/UCF system; note that you can specify the override
parameters in any order:

#DCPARM parameter EXEC IDMSDC PARM

VSE/ESA storage allocation technique

By default, DC/UCF uses the COMREG
storage technique at startup. To use the
GETVIS storage allocation technique,
specify GVIS=Y in the PARM list of the
EXEC IDMSDC statement

GVIS=Y

FREESTG (storage released to the operating
system)

FSTG=kilobytes-to-free

DMCLNAM (name of the DMCL module
to be used by the DC/UCF system)

DMCL=dmcl-name

PROMPT (operator overrides at system
startup)

By default, operator overrides are not
allowed.

PROMPT=Y

// EXEC PGM=IDMSDC,SIZE=32K,PARM='GVIS=Y,DMCL=LOCDMCL'

2-40 CA-IDMS System Operations

2.5 System startup under VM/ESA

2.5 System startup under VM/ESA

To start up DC/UCF in a VM/ESA virtual machine, perform the following steps:

1. Assemble the #DCPARM macro object.

2. Assemble the #SVCOPT macro object.

3. Link edit the startup routine, including the #DCPARM module.

4. Execute the startup routine.

�� For more information on VM/ESA systems, refer to CA-IDMS Installation and
Maintenance Guide - VM/ESA.

2.5.1 Step 1: Assemble the #DCPARM macro

The #DCPARM macro specifies basic information about the DC/UCF system to be
started up. #DCPARM syntax is presented under 2.2.3, “Coding a #DCPARM macro”
on page 2-6. To assemble the #DCPARM macro, use the following commands:

 VM/ESA RHDCPARM

GLOBAL MACLIB idmslib opsys.maclib(s)

FILEDEF TEXT DISK RHDCPARM TEXT A

ASSEMBLE dcparm (print noterm object

dcparm filename of the file that contains the #DCPARM macro
statement

idmslib filename of the CA-IDMS MACLIB library

opsys.maclib VM/ESA macro libraries.

DMSGPI DMSOM OSMACRO OSMACRO1

2.5.2 Step 2: Assemble the #SVCOPT macro

The #SVCOPT macro defines the type of VM/ESA environment that will be used. An
example was created during the base install named SVCOPT ASSEMBLE:

 VM/ESA #SVCOPT

GLOBAL MACLIB idmslib opsys.maclib(s)

FILEDEF text #SVCOPT TEXT A

ASSEMBLE svcopt (print noterm object

Chapter 2. System Startup 2-41

2.5 System startup under VM/ESA

idmslib filename of the CA-IDMS MACLIB library

opsys.maclib VM/ESA macro libraries.

DMSGPI DMSOM OSMACRO OSMACRO1

svcopt filename of the file that contains the #SVCOPT mcro
statement

2.5.3 Step 3: Link edit the startup routine

To link edit the DC/UCF startup routine into a CMS loadlib, use the following
commands:

VM/ESA DC/UCF Startup routine

FILEDEF SYSPRINT PRINTER

FILEDEF SYSLMOD DISK idmslib LOADLIB A1 (RECFM V LRECL 1�24 BLKSIZE 1�24

LKED linkctl

Linkage editor control statements (linkctl):

INCLUDE WTOEXIT

INCLUDE RHDCOCMS

INCLUDE CA$IOS

INCLUDE #SVCOPT

INCLUDE IDMSUSVC

INCLUDE IDMSCMSO

INCLUDE IDMSUSVM

INCLUDE RHDCACHE

INCLUDE RHDCOCOC

INCLUDE RHDCOCWP

INCLUDE RHDCPARM

ENTRY STARTUP

NAME dcucfsys(R)

dcucfsys name assigned to the module containing the DC/UCF
startup routine

idmslib LOADLIB A1 filename of the CA-IDMS LOADLIB containing the
dcucfsys load module

linkctl filename of the text file containing the linkage editor
control statements
Warning: In this example, the linkage editor control
statements identify TEXT files. The linkage order of
these TEXT files is critical in generating an executable
startup routine and should not be changed.

2-42 CA-IDMS System Operations

2.5 System startup under VM/ESA

2.5.4 Step 4: Execute the startup routine

Commands to execute the DC/UCF startup routine must include definitions of all user
database files and the terminal network. A sample EXEC is delivered as part of the
install process as STARTUP EXEC.

Chapter 2. System Startup 2-43

2.6 System startup under BS2000/OSD

2.6 System startup under BS2000/OSD

To start up DC/UCF on a BS2000/OSD system, perform the following steps:

1. Optionally, assemble the #DCPARM macro object.

2. Optionally, link edit the startup modules to include the new #DCPARM
(RHDCPARM object) within the two BS2KSTAR and IDMSDCB load modules.

3. Create an ENTER file and specify input for the startup module.

4. Update the FILE procedure to include definitions of all database files.

5. Submit the job.

Note: Steps 1 and 2 are optional. During installation, a #DCPARM macro is
assembled with the parameters specified to CDMSIJMP; the installation
procedure also automatically links BS2KSTAR and IDMSDCB.

2.6.1 Step 1: Customize RHDCPARM

RHDCPARM consists of a #DCPARM macro that specifies basic information about
the DC/UCF system to be started up. #DCPARM syntax is presented under 2.2.3,
“Coding a #DCPARM macro” on page 2-6. Edit the RHDCPARM source member in
the DBA source library that is created during installation. To assemble and link
RHDCPARM, use the IDMSMOD procedure with function DCPARM as shown
below. This creates customized modules BS2KSTAR and IDMSDCB in the DBA
loadlib.

/CALL-PROC (LIB=idms.dba.srclib,ELEM=IDMSMOD),PROC-PAR=(DCPARM)

idms.dba.srclib filename of the CA-IDMS DBA source library

2.6.2 Step 2: Create an ENTER file

JCL for a monotasking environment appears below as a DO procedure of the following
format:

BS2000/OSD ENTER File

2-44 CA-IDMS System Operations

2.6 System startup under BS2000/OSD

/BEGIN-PROC LOG=�ALL

/CALL-PROC (LIB=idms.dba.srclib,ELEM=FILE),PROC-PAR=(MODE=CV)

/ASSIGN-SYSOUT TO=idms.out

/ASSIGN-SYSLST TO=idms.lst

/ASSIGN-SYSDTA TO=�SYSCMD

/START-PROG �MOD(ELEM=BS2KSTAR,LIB=idms.dba.loadlib,RUN-MODE=�ADV)

BS2KSTAR Parameters �1�
SYSGEN OVERRIDES FOLLOW �2�
system-number-override

SYSIDMS Parameters �3�
END-SYSIDMS

Additional sysgen overrides �2�
END

/END-PROC

Note:
�1� - These cards are optional input parameters for BS2KSTAR. For a detailed
explanation, see below.
�2� - These parameters override the system generation specifications. You must
include these parameters if you specify PROMPT=YES in the #DCPARM macro.
�3� - These parameters must be specified only if you provide a dummied file
command for the SYSIDMS parameter file:

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=�DUMMY

Otherwise, omit these parameters.

BS2KSTAR parameters: All BS2KSTAR input cards are free format. Only one
parameter per input card is allowed.

All these parameters are optional and have defaults. The defaults come from the
RHDCPARM module which is link-edited with BS2KSTAR. Therefore, you can
choose one of the following actions:

■ Accept the defaults from the installation RHDCPARM.

■ Change the defaults permanently by customing RHDCPARM as described in
2.6.1, “Step 1: Customize RHDCPARM” on page 2-44.

■ Use the RHDCPARM from the installation but override its values with the
parameters as described below.

FREESTG=storage-size
Specifies the storage (in K-bytes) in the global memory pool of CA-IDMS that
will be used for the DMCL buffers, and for the name manager work space.

REGION=startup-region-size
Specifies the amount of class 6 memory (in K-bytes) that will be used for
configuring CA-IDMS.

MODULE=startup-module-name
Specifies the name of the real CA-IDMS startup module. The default is
IDMSDCB and is in your load library after installation. You can create a module

Chapter 2. System Startup 2-45

2.6 System startup under BS2000/OSD

with another name by using the link input cards as defined in the IDMSDCB
member in your source library. The module must reside in one of the
CDMSLIB's specified in your startup procedure.

MAXTSN=operating-system-task-number
Determines if you will run in monotasking or multitasking mode.
Operating-system-task-number is an integer in the range 1 to 999. If MAXTSN is
greater than 1, a multitasking environment is started.

�� For more information about multitasking, see Chapter 8, “Extended Addressing
and Multitasking.”

MSGID=message-id
Assigns a seven-character message ID that is used for all the messages to be sent
to the operator console.

SYSGEN OVERRIDES FOLLOW
Indicates the end of the BS2KSTAR input cards. You must use this statement
only if other input will be read from SYSDTA; that is, if one or both of the
following conditions exist:

■ You coded PROMPT=YES in the #DCPARM macro

■ You coded a dummied file command for the SYSIDMS parameter file:

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=�DUMMY

2.6.3 Step 3: Update the FILE procedure

All the FILE commands that define the database files and the load libraries are
specified in the FILE procedure from the DBA source library:

 BS2000/OSD

2-46 CA-IDMS System Operations

2.6 System startup under BS2000/OSD

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/CREATE-FILE F-NAME=lodrwork,SUPPRESS-ERR=�FILE-EXIST, -

/ SUP=�PUB-DISK(SPACE=�RELA(PRIM-ALLOC=primlodr,SEC-ALLOC=seclodr))

/ADD-FILE-LINK L-NAME=CDMSPAM,F-NAME=lodrwork

/ADD-FILE-LINK L-NAME=j1jrnl,F-NAME=idms.j1jrnl,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=j2jrnl,F-NAME=idms.j2jrnl,SHARED-UPD=�YES

additional journal file assignments, if necessary

/ADD-FILE-LINK L-NAME=dcdml,F-NAME=idms.system.ddldml,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dclod,F-NAME=idms.system.ddldclod,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dccat,F-NAME=idms.system.ddldccat,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dccatx,F-NAME=idms.system.ddlcatx,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dccatl,F-NAME=idms.system.ddlcatld,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=secdd,F-NAME=idms.sysuser.ddlsec,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dclog,F-NAME=idms.system.ddldclog,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dcmsg,F-NAME=idms.system.ddldcmsg,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dcrun,F-NAME=idms.system.ddldcrun,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dcscr,F-NAME=idms.system.ddldcscr,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dclscr,F-NAME=idms.sysloc.ddldcscr,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=sqldd,F-NAME=idms.syssql.ddlcat,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=sqllod,F-NAME=idms.syssql.ddlcatld,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=sqlxdd,F-NAME=idms.syssql.ddlcatx,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dictdb,F-NAME=idms.appldict.ddldml,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dloddb,F-NAME=idms.appldict.ddldclod,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dirldb,F-NAME=idms.sysdirl.ddldml,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=dirllod,F-NAME=idms.sysdirl.ddldclod,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=asfdml,F-NAME=idms.asfdict.ddldml,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=asflod,F-NAME=idms.asfdict.ddldclod,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=asfdata,F-NAME=idms.asfdict.asfdata,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=asfdefn,F-NAME=idms.asfdict.asfdefn,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=empldemo,F-NAME=idms.sqldemo.empldemo,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=infodemo,F-NAME=idms.sqldemo.infodemo,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=indxdemo,F-NAME=idms.sqldemo.indxdemo,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=projdemo,F-NAME=idms.sqldemo.projdemo,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=empdemo,F-NAME=idms.empdemo.empdemo,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=insdemo,F-NAME=idms.empdemo.insdemo,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=orgdemo,F-NAME=idms.empdemo.orgdemo,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=userdb,F-NAME=user.userdb,SHARED-UPD=�YES

additional database file assignments, if necessary

/ADD-FILE-LINK L-NAME=idmsloga,F-NAME=idms.idmsloga << if logging to print

alternate log file assignment, if necessary

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

file containing SYSIDMS parameters, as required

asfdata linkname of the ASF data (IDMSR-AREA) area

asfdefn linkname of the ASF data definition area

asfdml linkname of the ASF dictionary definition (DDLDML)
area

asflod linkname of the ASF dictionary definition load
(DDLDCLOD) area

dccat linkname of the system dictionary catalog (DDLCAT)
area

dccatl linkname of the system dictionary catalog load
(DDLCATLOD) area

Chapter 2. System Startup 2-47

2.6 System startup under BS2000/OSD

dccatx linkname of the system dictionary catalog index
(DDLCATX) area

dcdml linkname of the system dictionary definition
(DDLDML) area

dclod linkname of the system dictionary definition load
(DDLDCLOD) area

dclog linkname of the system log (DDLDCLOG) area

dclscr linkname of the system local mode scratch
(SYSLOC.DDLOCSCR) area

dcrun linkname of the system queue (DDLDCRUN) area

dcscr linkname of the system scratch (DDLDCSCR) area

dictdb linkname of the application dictionary definition
(DDLDML) area

dirldb linkname of the IDMSDIRL dictionary definition
(DDLDML) area

dirllod linkname of the IDMSDIRL dictionary definition load
(DDLDCLOD) area

dloddb linkname of the application dictionary definition load
(DDLDML) area

empdemo linkname of the EMP-DEMO-AREA area

empldemo linkname of the EMPLAREA area

idmsloga linkname of the print log file

idms.appldict.ddldml filename of the application dictionary definition
(DDLDML) area

idms.appldict.ddldclod filename of the application dictionary definition load
(DDLDCLOD) area

idms.asfdict.asfdata filename of the ASF data (ASFDATA) area

idms.asfdict.asfdefn filename of the ASF data definition (ASFDEFN) area

idms.asfdict.ddldml filename of the ASF dictionary definition (DDLDML)
area

idms.asfdict.ddldclod filename of the ASF dictionary definition load
(DDLDCLOD) area

idms.empdemo.empdemo filename of the EMP-DEMO-AREA area of the
Commonweather database

idms.empdemo.insdemo filename of the INS-DEMO-AREA area of the
Commonweather database

2-48 CA-IDMS System Operations

2.6 System startup under BS2000/OSD

idms.empdemo.orgdemo filename of the ORG-DEMO-AREA area of the
Commonweather database

idms.loadlib filename of the CA-IDMS load library

idms.dba.loadlib filename of the load library containing the DMCL and
database name table load modules

idms.idmsloga filename of the print log file

idms.j1jrnl/
idms.j2jrnl

filename of the first and second disk journal file

idms.projseg.projdemo filename of the PROJAREA area of the
Commonweather (SQL-defined) database

idms.sqldemo.empldemo filename of the EMPLAREA area of the
Commonweather (SQL-defined) database

idms.sqldemo.indxdemo filename of the INDXAREA area of the
Commonweather (SQL-defined) database

idms.sqldemo.infodemo filename of the INFOAREA area of the
Commonweather (SQL-defined) database

idms.sysctl filename of the SYSCTL file

idms.sysdirl.ddldclod filename of the IDMSDIRL definition load
(DDLDCLOD) area

idms.sysdirl.ddldml filename of the IDMSDIRL definition (DDLDML) area

idms.sysidms filename of the SYSIDMS parameter file

idms.sysloc.ddldcscr filename of the system local mode scratch
(SYSLOC.DDLDCSCR) area

idms.sysmsg.ddldcmsg filename of the system message (DDLDCMSG) area

idms.syssql.ddlcat filename of the SQL catalog (DDLCAT) area

idms.syssql.ddlcatld filename of the SQL catalog load (DDLCATLOD) area

idms.syssql.ddlcatx filename of the SQL catalog index (DDLCATX) area

idms.system.ddlcat filename of the system dictionary catalog (DDLCAT)
area

idms.system.ddlcatld filename of the system dictionary catalog load
(DDLCATLOD) area

idms.system.ddlcatx filename of the system dictionary catalog index
(DDLCATX) area

idms.system.ddldml filename of the system dictionary definition
(DDLDML) area

idms.system.ddldclod filename of the system dictionary definition load
(DDLDCLOD) area

Chapter 2. System Startup 2-49

2.6 System startup under BS2000/OSD

idms.system.ddldclog filename of the system log (DDLDCLOG) area

idms.system.ddldcrun filename of the system queue (DDLDCRUN) area

idms.system.ddldcscr filename of the system scratch (DDLDCSCR) area

idms.sysuser.ddlsec filename of the system user catalog
(SYSUSER.DDLSEC) area

indxdemo linkname of the INDXAREA area

infodemo linkname of the INFOAREA area

insdemo linkname of the INS-DEMO-AREA area

j1jrnl/
j2jrnl

linkname of the first and second disk journal file

lodrwork filename of the loader work file

orgdemo linkname of the ORG-DEMO-AREA area

primlodr,
seclodr

space allocation for the loader work file (primlodr and
seclodr must be at least 16 each)

projdemo linkname of the PROJDEMO area

secdd linkname of the system user catalog (DDLSEC) area

sqldd linkname of the SQL catalog (DDLCAT) area

sqllod linkname of the SQL catalog load (DDLCATLOD) area

sqlxdd linkname of the SQL catalog index (DDLCATX) area

sysctl linkname of the SYSCTL file

sysmsg linkname of the system message (DDLDCMSG) area

userdb linkname of the user database file

user.userdb filename of the user database file

2.6.4 Step 4. Submit the job

Submit an ENTER calling the procedure created in step 2.

Note that the JOBNAME of the job may not start with IDMS, even in a monotasking
environment.

2-50 CA-IDMS System Operations

2.7 What happens during startup

2.7 What happens during startup

To begin the DC/UCF startup process, execute the DC/UCF startup routine. The
startup routine:

1. Acquires storage for the DC/UCF system

2. Builds the system by passing control to a series of startup modules

When these steps are finished, the DC/UCF system is executing. Each of these steps
is discussed below, followed by a description of the DC/UCF region/partition layout
that is built during the startup procedure.

2.7.1 How the startup routine acquires storage

To build the DC/UCF system, the startup routine acquires as much storage as possible
for the DC/UCF region/partition. Because the operating system requires execution
space, the startup routine immediately returns storage space to the operating system.
The amount of storage returned to the operating system is determined by the
FREESTG parameter of the #DCPARM macro.

The figure below shows how the startup routine acquires and returns storage. Details
on how this is done at startup time are given below for:

 ■ OS/390

■ VSE/ESA - GETVIS

 ■ VM/ESA

 ■ BS2000/OSD

Chapter 2. System Startup 2-51

2.7 What happens during startup

1. The startup routine acquires

as much contiguous storage as

 it can.

 ┌──────────────────────────────┐

Low ──� │ ┌───────────────┐ │

storage │ │DC/UCF startup │ │

 address │ │routine │ │

 │ │ │ │

 │ └──────┬────────┘ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

 │ │ │

├─ - - - -┼- - - - - - - - - - ┤

│ │ │ 2. The DC/UCF startup routine

│ │ │ returns to the operating

│ │ │ system the amount of storage

│ │ │ specified by FREESTG.

 └─────────↓────────────────────┘

OS/390 systems: Under OS/390, the DC/UCF startup routine:

1. Acquires contiguous storage in the region by issuing a GETMAIN command. The
GETMAIN command acquires as much contiguous storage as possible. The
maximum amount of storage that can be obtained is determined by the EXEC
statement REGION parameter in the DC/UCF startup JCL.

2. Returns storage to the operating system by issuing a FREEMAIN command. The
amount of storage returned is specified in the FREESTG parameter of the
#DCPARM macro.

An operating system abend due to insufficient memory during startup is most
likely the result of specifying insufficient storage in the FREESTG parameter.

3. Allocates storage for the DC/UCF nucleus, control blocks, storage pools, and
program pools as specified at system generation.

4. Returns any unused storage to the operating system by issuing a second
FREEMAIN command.

VSE/ESA systems: Under VSE/ESA, the DC/UCF startup routine acquires storage
by using one of two techniques: COMREG or GETVIS.

�� For information on how to request one of these storage techniques, 2.4, “System
startup under VSE/ESA” on page 2-16.

The table below describes how each storage technique determines both where the
startup routine acquires storage and how it returns storage to the operating system.

2-52 CA-IDMS System Operations

2.7 What happens during startup

The amount of storage returned to the operating system is given by the FREESTG
parameter of the #DCPARM macro for the system if GETVIS is used.

VM/ESA systems: Under VM/ESA, the DC/UCF startup routine:

1. Acquires contiguous storage in the virtual machine by issuing a GETMAIN
command. The GETMAIN command acquires as much contiguous storage as
possible. Make sure that the system does not try to acquire storage that contains
shared segments.

2. Returns storage to the operating system by issuing a FREEMAIN command. The
amount of storage returned is specified in the FREESTG parameter of the
#DCPARM macro.

Be sure to return at least 256K bytes of storage to the operating system. An
operating system abend during startup indicates that FREESTG does not reserve
enough storage.

3. Allocates storage for the DC/UCF nucleus, control blocks, storage pools, and
program pools as specified at system generation.

4. Returns any unused storage to the operating system by issuing a second
FREEMAIN command.

�� For information about defining the VM/ESA virtual machine in which the DC/UCF
system is to execute, refer to CA-IDMS Installation and Maintenance Guide - VM/ESA.

BS2000/OSD systems: Under BS2000/OSD, the following steps are executed to
startup the DC/UCF system:

1. The BS2KSTAR startup module reads its specific parameters. The REGION and

Technique Description

COMREG
(default)

The startup routine:

■ Acquires storage according to the address stored in the
communications region. The address represents the end of
the last phase that was loaded.

GETVIS The startup routine:

1. Calculates the size amount of GETVIS storage available in
the partition up to the 16 Megabyte address line or to the end
of the partition, which ever is less.

2. Subtracts the FREESTG value and issues one GETVIS
request for the calculated size.

3. Calculates the amount of XA storage required and issues one
GETVIS request for that amount.

4. When startup completes any storage from below the line that
is not used is released to the partition.

Chapter 2. System Startup 2-53

2.7 What happens during startup

FREESTG parameters must be provided if you want to overwrite the
corresponding values generated via the #DCPARM macro.

2. BS2KSTAR enables the global memory pool, which will contain the system
tables, the nucleus, the storage pools, and program pools. This memory pool
starts at the second segment memory address, and its length is equal to the
REGION parameter value truncated to a multiple of a segment, minus the first
segment memory (that is, 64K), and minus the size requested for the ERE pool:

memory-pool-length =

 (region-size/segment-size) -

 first-segment-memory-size -

 ERE-pool-size

3. BS2KSTAR loads the real startup module, by default IDMSDCB, in that global
memory pool, and gives control to its startup routine.

4. The startup routine acquires the space in the global memory pool by issuing the
REQMP macro. All the space contained between the end of the IDMSDCB load
module in memory, and the end of the global memory pool minus the value
specified for the FREESTG parameter is acquired.

2.7.2 How the system is built

The DC/UCF system is built based on system generation definitions, #DCPARM
specifications, and operator startup override values. The startup routine coordinates
building of the DC/UCF region/partition by passing control to other system modules
that do most of the work. 2.7.3, “The DC/UCF region/partition layout” on page 2-59,
shows the resulting DC/UCF region/partition layout.

During the startup process, DC/UCF issues messages to inform the operator of the
system's activities. The output below shows a portion of a sample DC/UCF log file
that contains startup messages:

1�23�� �8.3�.24 IDMS DC�13��2 V72 T� ATTACHING DATABASE RESOURCE CONTROLLER

1�23�� �8.3�.24 IDMS DC2��131 V72 T1 Lock Manager Initialization Complete

1�23�� �8.3�.24 IDMS DC2��185 V72 T1 All transactions recovered

1�23�� �8.3�.24 IDMS DB347�42 V72 T1 VALIDATE Ret okay for AREA --> DBCR.BRN...

1�23�� �8.3�.24 IDMS DB347�43 V72 T1 VALIDATE says I-CV-I Off for AREA --> D...

1�23�� �8.3�.24 IDMS DB347�42 V72 T1 VALIDATE Ret okay for AREA --> DBCR.ACC...

1�23�� �8.3�.24 IDMS DB347�43 V72 T1 VALIDATE says I-CV-I Off for AREA --> D...

1�23�� �8.3�.24 IDMS DB347�42 V72 T1 VALIDATE Upd okay for AREA --> SYSTEM.D...

1�23�� �8.3�.24 IDMS DB347�43 V72 T1 VALIDATE says I-CV-I On for AREA -->SYS...

1�23�� �8.3�.24 IDMS DB347�44 V72 T1 SYSPLEX message sent to --> SYSTEM71

1�23�� �8.3�.24 IDMS DC2�1��1 V72 T1 CA-IDMS/DB: 72 Started

1�23�� �8.3�.24 IDMS DC2����9 V72 T1 CA-IDMS/DB Active �8:3�:22 ��.297

1�23�� �8.3�.24 IDMS DC�13��3 V72 T� OPENING SYSTEM RUN UNITS

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCRUSD

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCRUSD

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCRUSD

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCRUSD

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCRUSD

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCRUSD

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCLGSD

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCLGSD

1�23�� �8.3�.24 IDMS DC�5���1 V72 T� DCLOG IS �9% FULL

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCLGSD

2-54 CA-IDMS System Operations

2.7 What happens during startup

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER PMONCIOD

1�23�� �8.3�.24 IDMS PM2136�1 V72 T11 INITIALIZING PERFORMANCE MONITOR

1�23�� �8.3�.24 IDMS PM2136�6 V72 T11 APPLICATION MONITOR ACTIVE

1�23�� �8.3�.24 IDMS PM2136�8 V72 T11 INTERVAL MONITOR ACTIVE

1�23�� �8.3�.24 IDMS PM2136�2 V72 T11 PERFORMANCE MONITOR INITIALIZATION COM...

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER PMONCROL

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCDEAD

1�23�� �8.3�.24 IDMS DC��1�99 V72 T13 RHDCDEAD is now active

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER RHDCCFSD

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER IDMSLMSD

1�23�� �8.3�.24 IDMS DC�13�14 V72 T� ATTACHING TASK FOR SERVICE DRIVER IDMSDBSD

1�23�� �8.3�.24 IDMS DC2�51�1 V72 T16 IDMSDBSD Started

1�23�� �8.3�.24 IDMS DC�13�16 V72 T� SECURITY SYSTEM INITIALIZATION BEGINNING

1�23�� �8.3�.24 IDMS DC�13�17 V72 T� SECURITY SYSTEM INITIALIZATION COMPLETE

1�23�� �8.3�.24 IDMS DC256��2 V72 T� ��� QUEUE STATUS IN DDLDCRUN �

1�23�� �8.3�.24 IDMS DC256��3 V72 T� QUEUE NAME INV TASK RECORDS CREA...

1�23�� �8.3�.26 IDMS DC256��4 V72 T� OLQQNOTE OLQTNOTE ������� ��.....

1�23�� �8.3�.26 IDMS DC256��4 V72 T� RHDCREPTJZWX1 ������3 ��.2...

1�23�� �8.3�.26 SYSTEM INITIALIZED ON ��297 AT �8:3�:26.14

1�23�� �8.3�.26 MAP OF REGION

1�23�� �8.3�.26 RHDCOESA ����651� OPT ���16�3� CSA ���17�5� LKM...

1�23�� �8.3�.26 CCE ���493A� SCAAREA ���4B28� RUA ���4C4�� NLT...

1�23�� �8.3�.26 DDT ���4F�A� PTT ���4F�F� QDT ���5�86� TCA...

1�23�� �8.3�.26 DCEAREA ���5296� TCEAREA ���54B2� MPMODTBL ���8EB4� ECBL...

1�23�� �8.3�.26 CSVCAREA ���9�6�� PGMPOOL ���93��� RENTPOOL ��11���� IDMS...

1�23�� �8.3�.26 RHDCD�4W ��15C4�� RHDCD�ZU ��15DA�� RHDCD�LV ��16422� RHDC...

1�23�� �8.3�.26 RHDCD�LX ��16ECA8 RHDCD��B ��172C�� RHDCD�3Q ��1748�� RHDC...

1�23�� �8.3�.26 STGPOOL ��36F��� HIADDR ��518��� LTT �CEF2DC� TCES...

1�23�� �8.3�.26 ABENDSTG �CFFD668 TDT �CFFD9A� PDT �D��1C�� SCT...

1�23�� �8.3�.26 TRCEBUFS �D�5594� RCA �D18E�E� RLEAREA �D18E1A� RCEA...

1�23�� �8.3�.26 DPEAREA �D1C4�8� ILEAREA �D1D8198 XAPGMPL �D3EA��� XARE...

1�23�� �8.3�.26 IDMSDBMS �D467�58 RHDCRUSD �D618��� RHDCLGSD �D618A�� PMON...

1�23�� �8.3�.26 XASTGPL �D91C��� CVDMCL �DC1�288

1�23�� �8.3�.26 MAP OF NUCLEUS

1�23�� �8.3�.26 MODNAME CSECT ASM DATE LOADADR ENTRY POINTS

1�23�� �8.3�.26 RHDCOS�� ����651� OS��EP1 ����742C

1�23�� �8.3�.26 IDMSDBIO ��11���� DBIOEP1 ��11��58...

1�23�� �8.3�.26 IDMSDBMS IDMSDBMS ���912 17:�3 �D467��� DBMSEP1 �D467�58

1�23�� �8.3�.26 IDMSHLDB IDMSHLDB ��1�18 15:42 �D47F��� HLDBEP1 �D47F�58...

1�23�� �8.3�.26 IDMSEXP IDMSEXP ��1�1� 17:21 �D4888�� EXPEP1 �D488858

1�23�� �8.3�.26 IDMSQSRT IDMSQSRT 99�8�2 17:11 �D48DC�� QSRTEP1 �D48DC58

1�23�� �8.3�.26 RHDCEVAL RHDCEVAL 99�8�2 19:15 ��12CC�� EVALNTRY ��12CC58

1�23�� �8.3�.26 RHDCURTN RHDCURTN 99�8�3 �8:34 ��1324�� URTNEP1 ��132458

1�23�� �8.3�.26 RHDCSCRN RHDCSCRN ��1�23 �8:23 ��133��� SCRNEP1 ��133�58

1�23�� �8.3�.26 IDMSKEEP IDMSKEEP ��1��4 �9:5� �D49�4�� KEEPEP1 �D49�458...

1�23�� �8.3�.26 IDMSLRF IDMSLRF 99�827 �9:39 �D492��� LRFEP1 �D492�8�

1�23�� �8.3�.26 RHDCCURS RHDCCURS ���921 11:48 �D4966�� CURSEP1 �D496658...

1�23�� �8.3�.26 RHDCWAIT RHDCWAIT ��1�12 1�:55 �D4998�� WAITEP1 �D499858...

1�23�� �8.3�.26 WAITEP2A �D49B9�4...

1�23�� �8.3�.26 WAITEP6 �D49C65�...

1�23�� �8.3�.26 IDMSAREC IDMSAREC ���317 11:39 �D49DA�� ARECEP1 �D49DA58

1�23�� �8.3�.26 IDMSARBK IDMSARBK ���71� 13:49 �D49EA�� ARBKEP1 �D49EA58...

1�23�� �8.3�.26 IDMSBRBK IDMSBRBK ���317 11:4� �D49F6�� BRBKEP1 �D49F658...

1�23�� �8.3�.26 IDMSLRBK IDMSLRBK ���211 14:36 �D4A12�� LRBKEP1 �D4A1258

1�23�� �8.3�.26 RHDCNVTR RHDCNVTR 99�827 �9:49 �D4A34�� NVTREP1 �D4A3458

1�23�� �8.3�.26 IDMSCONN IDMSCONN ���721 13:23 �D4A42�� CONNEP1 �D4A4258

1�23�� �8.3�.26 IDMSXTRA IDMSXTRA ���629 17:32 �D4A82�� XTRAEP1 �D4A8258

1�23�� �8.3�.26 IDMSBLDR IDMSBLDR ��1�2� 11:4� �D4ACC�� BLDREP1 �D4ACC58

1�23�� �8.3�.26 RHDCMODT RHDCMODT 99�8�2 19:27 �D4C�2�� MODTEP1 �D4C�258

Chapter 2. System Startup 2-55

2.7 What happens during startup

1�23�� �8.3�.26 RHDCRUAL RHDCRUAL ���317 12:13 �D4C1��� RUALEP1 �D4C1�58...

1�23�� �8.3�.26 RHDCSCRM RHDCSCRM 99�927 14:53 �D4C36�� SCRMEP1 �D4C3658...

1�23�� �8.3�.26 RHDCQUEM RHDCQUEM ���818 15:34 �D4C5E�� QUEMEP1 �D4C5E58

1�23�� �8.3�.26 RHDCMISC RHDCMISC ���721 13:38 �D4CAC�� HISTOEP1 �D4CAC58...

1�23�� �8.3�.26 SNGLEP1 �D4CC4C8...

1�23�� �8.3�.26 RHDCTABL RHDCTABL 9912�8 14:45 �D4CCE�� TBLSREP1 �D4CCE58...

1�23�� �8.3�.26 RHDCCXIT RHDCCXIT 99�8�2 19:�2 ��135C�� CXITEP1 ��135C58

1�23�� �8.3�.26 RHDCSNAP RHDCSNAP ��1�16 14:�5 �D4CE2�� SNAPEP1 �D4CE258

1�23�� �8.3�.26 RHDCRMGR RHDCRMGR 99�8�3 �8:24 �D4D86�� RMGREP1 �D4D8658...

1�23�� �8.3�.26 RHDCSTGP RHDCSTGP ���825 �5:52 �D4D9E�� STGPGET �D4D9E58...

1�23�� �8.3�.26 RHDCPCTL RHDCPCTL ��1��4 �9:51 �D4DCC�� PCTLLINK �D4DCF24...

1�23�� �8.3�.26 PCTLABND �D4DD�98...

1�23�� �8.3�.26 RHDCLODR RHDCLODR ��1��2 1�:13 �D4E�8�� LODRSET �D4E�AEC...

1�23�� �8.3�.26 LODRDYLT �D4E4A94...

1�23�� �8.3�.26 RHDCTIRH RHDCTIRH 99�8�3 �8:32 �D4E7��� TIRHREQ �D4E7�58

1�23�� �8.3�.26 RHDCMAPR RHDCMAPR ���317 12:�8 �D4EA4�� MAPREP1 �D4EA458

1�23�� �8.3�.26 RHDCAEDT RHDCAEDT ���317 12:�3 �D4ED4�� AEDTEP1 �D4ED458

1�23�� �8.3�.26 RHDCTAPR RHDCTAPR 99�8�3 �8:3� �D4F18�� MAPTAPR �D4F3FB8

1�23�� �8.3�.26 RHDCPAGR RHDCPAGR 99�8�3 �8:2� �D5��6�� PAGREP1 �D5��658

1�23�� �8.3�.26 RHDCMPGP RHDCMPGP ���629 17:41 �D5�38�� MPGPEP1 �D5�3858

1�23�� �8.3�.26 RHDCLINR RHDCLINR 99�8�2 19:25 �D5�66�� LINREP1 �D5�6658...

1�23�� �8.3�.26 RHDCPCBO RHDCPCBO ��1�1� �3:4� ��1364�� PCOBEP1 ��136458...

1�23�� �8.3�.26 RHDCCOBI RHDCCOBI ��1�2� �7:13 �D5�94�� COBIEP1 �D5�9458

1�23�� �8.3�.26 RHDCPLII RHDCPLII ��1�2� �7:13 ��1378�� PLIIEP1 ��137858

1�23�� �8.3�.26 RHDCPPLO RHDCPPLO 99�8�3 �8:22 ��139��� PPLOEP1 ��139�58...

1�23�� �8.3�.26 RHDCPLIB RHDCPLIB 99�8�3 �8:21 ��139E�� PLIBVECT ��139E58

1�23�� �8.3�.26 RHDCTIMP RHDCTIMP ���71� 13:58 �D5�BE�� TIMPGET �D5�BE58...

1�23�� �8.3�.26 RHDCWTL RHDCWTL ��1�2� 11:25 �D5�D6�� WTLEP1 �D5�D658...

1�23�� �8.3�.26 RHDCEDQ RHDCEDQ 99�8�2 19:15 �D5�FC�� EDQENQ �D5�FC6�...

1�23�� �8.3�.26 RHDCDBCO RHDCDBCO ���317 12:�6 �D511��� DBCOEP1 �D511�58...

1�23�� �8.3�.26 RHDCDBRC RHDCDBRC ��1�19 11:11 �D5128�� DBRCEP1 �D512858...

1�23�� �8.3�.26 JRDRVEP �D529��C...

1�23�� �8.3�.26 RHDCTTAB �D52A8�� CTAB �D52A85�

1�23�� �8.3�.26 RHDCMSTR RHDCMSTR ���721 13:38 �D52AE�� MSTREP1 �D52AE58

1�23�� �8.3�.26 RHDCTSKC RHDCTSKC ���818 15:35 �D53�4�� TSKCEP1 �D53�458

1�23�� �8.3�.26 RHDCTSKI RHDCTSKI ���629 17:55 �D5328�� TSKIEP1 �D532858...

1�23�� �8.3�.26 RHDCFLTR RHDCFLTR 9911�8 1�:58 �D5358�� FLTREP1 �D535858

1�23�� �8.3�.26 IDMSSERV IDMSSERV ���3�3 13:4� �D5364�� IDMSERUS �D536458...

1�23�� �8.3�.26 IDMSTASK IDMSTASK ���118 15:24 �D538E�� IDMSXTSK �D538E58...

1�23�� �8.3�.26 RHDCOTRC RHDCOTRC 99�8�3 �8:16 �D53B4�� TTRCEP1 �D53B458

1�23�� �8.3�.26 RHDCUXIT RHDCUXIT 951222 15:�5 ��13AE�� UXITEP1 ��13AE5�

1�23�� �8.3�.26 RHDCSMSG RHDCSMSG ���629 17:5� �D53BE�� SMSGEP1 �D53BE58...

1�23�� �8.3�.26 RHDCTERM RHDCTERM 9911�8 11:�9 �D53D4�� TERMEP1 �D53D458

1�23�� �8.3�.26 RHDCPRNT RHDCPRNT ��1�19 1�:44 �D53FE�� PRNTEP1 �D53FE58...

1�23�� �8.3�.26 PRNTEP5 �D5426F�...

1�23�� �8.3�.26 RHDCBANR RHDCBANR 99�8�2 18:57 �D542E�� BANREP1 �D542E58

1�23�� �8.3�.26 RHDCUTRC RHDCUTRC 99�8�3 �8:34 �D5434�� UTRCEP1 �D543458

1�23�� �8.3�.26 RHDCSTAT RHDCSTAT ���629 17:5� �D5438�� STATEP1 �D543858...

1�23�� �8.3�.26 RHDCINTX RHDCINTX 99�8�2 19:24 �D544E�� IDMSINTX �D544E58

1�23�� �8.3�.26 RHDCDBUG RHDCDBUG 99�8�2 19:�4 �D5456�� DBUGEP1 �D545658

1�23�� �8.3�.26 RHDCLIMT RHDCLIMT ���118 15:46 �D546A�� LIMTEP1 �D546A58

1�23�� �8.3�.26 IDMSTOOL IDMSTOOL 99�8�2 17:2� �D5472�� TOOLEP1 �D547258

1�23�� �8.3�.26 RHDCMODE RHDCMODE ��1��6 11:37 �D5476�� MODEEP1 �D547658...

1�23�� �8.3�.26 RHDCLOCK RHDCLOCK 9912�6 18:26 �D547C�� LOCKEP1 �D547C58

1�23�� �8.3�.26 RHDCAPPC RHDCAPPC 99�8�2 18:57 �D5486�� APPCEP1 �D548658

1�23�� �8.3�.26 RHDCDLIF ��13B6�� DLIFEP1 ��13C5A�

1�23�� �8.3�.26 RHDCDLRC RHDCDLRC 99�8�2 19:�5 ��13CC�� DLRCEP1 ��13CC58

1�23�� �8.3�.26 RHDCDLBE ��13DA�� DLBEEP1 ��13E�68

1�23�� �8.3�.26 RHDCSNMT RHDCSNMT 99�927 14:53 �D54B4�� SNMTEP1 �D54B458...

2-56 CA-IDMS System Operations

2.7 What happens during startup

1�23�� �8.3�.26 PMVECTRS PMVECTRS 99�8�2 18:53 ��14E��� PMVECEP1 ��14E�58

1�23�� �8.3�.26 RHDCALOC RHDCALOC 99�8�2 18:57 �D54BA�� ALOCEP1 �D54BA58

1�23�� �8.3�.26 RHDCSRTT RHDCSRTT ���9�5 16:51 �D54BE�� SRTTEP1 �D54BE5�

1�23�� �8.3�.26 RHDCSCEN RHDCSCEN ���629 17:5� �D54CC�� SCENEP1 �D54CC58

1�23�� �8.3�.26 RHDCSASC RHDCSASC 99�8�3 �8:25 �D554A�� SASCEP1 �D554A58

1�23�� �8.3�.26 IDMSDDAM IDMSDDAM 99�8�2 16:47 �D555��� DDAMEP1 �D555�58...

1�23�� �8.3�.26 IDMSLMGR IDMSLMGR ���818 15:2� ���322A� LK��EP1 ���322F8

1�23�� �8.3�.26 RHDCCMSG ��1526�� CENTRY ��1527C�

1�23�� �8.3�.26 RHDCDSIR RHDCDSIR 99�8�2 19:�5 ��1592�� DSIREP1 ��159258...

1�23�� �8.3�.26 IDMSMBM IDMSMBM 99�8�2 17:�7 �D557E�� MBMEP1 �D557E58

1�23�� �8.3�.26 IDMSSSP �D558C�� @MAIN �D559�78

1�23�� �8.3�.26 IDMSAMC �D5616�� AMCEP1 �D5D4CB�

1�23�� �8.3�.26 RHDCTD�D �D5DDC�� TD�DEP1 �D5EA51�...

1�23�� �8.3�.26 RHDCP58B RHDCP58B 99�8�3 �8:24 �D5EBA�� P58BEP1 �D5EBA58

1�23�� �8.3�.26 IDMSAMSC IDMSAMSC 99�8�2 16:�2 �D5EBE�� AMSCEP1 �D5EBE58

1�23�� �8.3�.26 IDMSTMGR IDMSTMGR ��1��4 �9:51 �D5ECA�� TMGREP1 �D5ECBE8...

1�23�� �8.3�.26 IDMSQSRV IDMSQSRV ���317 11:49 �D5F2E�� QSRVEP1 �D5F2E58

1�23�� �8.3�.26 IDMSNCLI IDMSNCLI ���9�5 15:2� �D5F68�� NCLIEP1 �D5F6858...

1�23�� �8.3�.26 IDMSNSRV IDMSNSRV ���629 17:31 �D5F84�� NSRVEP1 �D5F8458

1�23�� �8.3�.26 IDMSQCLI �D5FA��� QCLIEP1 �D5FA1C�

1�23�� �8.3�.26 RHDCMPRF RHDCMPRF 9911�8 11:�1 �D6�3C�� MPRFEP1 �D6�3C58...

1�23�� �8.3�.26 IDMSUTIL IDMSUTIL ���317 11:52 �D6�6E�� UTILEP1 �D6�6E58

1�23�� �8.3�.26 IDMSMSGM IDMSMSGM 99�8�2 17:�8 �D6�A��� MSGMEP1 �D6�A�58

1�23�� �8.3�.26 IDMSDTCM IDMSDTCM 99�8�2 16:56 �D6�B8�� DTCMEP1 �D6�B858

1�23�� �8.3�.26 IDMSDTCN IDMSDTCN ���822 �9:�� �D6�C6�� DTCNEP1 �D6�C658

1�23�� �8.3�.26 RHDCENVP RHDCENVP 9911�8 1�:58 �D6�DC�� ENVPEP1 �D6�DC58

1�23�� �8.3�.26 IDMSIDMS IDMSIDMS ���721 13:26 ��1596�� IDMSVECT ��159658

1�23�� �8.3�.26 IDMSDCLI IDMSDCLI 99�8�2 16:46 �D6�F2�� DCLIEP1 �D6�F258

1�23�� �8.3�.26 IDMSDSRV IDMSDSRV 99�8�2 16:55 �D61�2�� DSRVEP1 �D61�258

1�23�� �8.3�.26 ESVSAMBE ESVSAMBE 99�8�2 14:13 �D61�8�� AMBEEP1 �D61�858

1�23�� �8.3�.26 RHDCLE37 RHDCLE37 ���818 15:33 ��15AA�� LE37EP1 ��15AA58

1�23�� �8.3�.26 RHDCCFIM RHDCCFIM ���921 �7:49 ���2422� CFIMVECT ���24278

1�23�� �8.3�.26 END OF SNAP

1�23�� �8.3�.26 IDMS DC�13��4 V72 T� ATTACHING DRIVER FOR LINE UCFLINE

1�23�� �8.3�.26 IDMS DC�13��4 V72 T� ATTACHING DRIVER FOR LINE CCILINE

1�23�� �8.3�.26 IDMS DC�13��4 V72 T� ATTACHING DRIVER FOR LINE VTAM

1�23�� �8.3�.26 IDMS DC�13��4 V72 T� ATTACHING DRIVER FOR LINE DDSVTAM

1�23�� �8.3�.26 IDMS DC�13��4 V72 T� ATTACHING DRIVER FOR LINE D�FILINE

1�23�� �8.3�.26 IDMS DC�91��1 V72 T� ATTACHING PRINTER CONTROL TASK

1�23�� �8.3�.26 IDMS DC2�41�1 V72 T2� DDS-VTAM-DRIVER CONNECTED TO SYSTEM71

1�23�� �8.3�.26 IDMS DC�13�11 V72 T� ATTACHING QUEUE CLEANUP TASK

1�23�� �8.3�.26 IDMS DC�13�13 V72 T� ATTACHING LOADAREA CLEANUP TASK

1�23�� �8.3�.26 IDMS DC�13��5 V72 T� CENTRAL VERSION INITIALIZATION COMPLETE

1�23�� �8.3�.26 IDMS DC�741�� V72 T� V72 ENTER NEXT TASK CODE:

1�23�� �8.3�.26 IDMS DC�741�� V72 T� ?

Startup routine steps: Events that occur during the DC/UCF startup process are
outlined below:

1. The startup routine acquires storage for the DC/UCF region/partition and then
frees a predefined amount of storage to the operating system. This process is
described above, in 2.7.1, “How the startup routine acquires storage” on
page 2-51.

2. The startup routine loads the main startup module (RHDCNTRY) at the end of the
acquired region and passes control to the module.

Chapter 2. System Startup 2-57

2.7 What happens during startup

RHDCNTRY builds the DC/UCF system in the acquired space. If data sharing is
in effect, it joins the XCF group and connects to the XES list and lock structures.
If necessary, RHDCNTRY performs a warmstart. The DC/UCF system definition
is read from the dictionary named SYSTEM as identified by a DBNAME or a
segment name. If the #DCPARM macro allows operators to enter startup override
values, RHDCNTRY prompts for overrides to system generation values. Then
RHDCNTRY builds the rest of the DC/UCF system.

RHDCNTRY loads the system components sequentially, starting at the low end
(the low storage address) of the DC/UCF region/partition.

RHDCNTRY allocates additional storage, if necessary for:

■ Storage pools (24-bit and 31-bit)

■ Program pools (24-bit and 31-bit)

 ■ Abend storage

RHDCNTRY defines the MASTER task as the first task, T0 (task zero), and then
returns control to the startup routine.

3. The startup routine returns any unused space in the originally acquired
region/partition to the operating system.

4. The startup routine passes control to the DC/UCF dispatcher (RHDCWAIT).

5. RHDCWAIT dispatches the MASTER task (task T0). At this point, the DC/UCF
startup process is complete and DC/UCF system execution is in progress.

The MASTER task attaches the Database Resource Controller (DBRC) task, T1,
which manages the database.

During startup, DBRC

■ Opens the journaling system

■ Processes unrecovered transactions

■ Coordinates data sharing member startup, if applicable

■ Initiates operator communications through the console

■ Starts up the external request-unit service (ERUS) facility

■ Posts the MASTER task when initialization is complete

The MASTER task also:

■ Writes a map of the region/partition and a map of the DC/UCF nucleus to the
DC/UCF log

■ Attaches driver modules

■ Attaches the print control task (if applicable).

■ Invokes the CLOD task to erase all logically deleted load modules from load
area

■ Invokes the QUED task to erase all expired queues

2-58 CA-IDMS System Operations

2.7 What happens during startup

�� You can also invoke the CLOD and QUED tasks after startup, as described in
CA-IDMS System Tasks and Operator Commands

MASTER then attaches any startup autotasks defined at DC/UCF system
generation time.

2.7.3 The DC/UCF region/partition layout

The DC/UCF region/partition layout differs depending on your system's configuration.
For example, a system that supports extending addressing will have a different
DC/UCF region/partition layout than one that does not.

To examine the layout for your DC/UCF system, issue the following DCMT
command:

� �
DCMT DISPLAY MEMORY MAP

� �

�� For more information about this command, refer to CA-IDMS System Tasks and
Operator Commands.

System nucleus modules: System nucleus modules are loaded at the beginning
of the appropriate program and reentrant pools. The nucleus load table (NLT) resides
in the DC/UCF region/partition to identify the system nucleus modules to the system.
To display a map of the DC/UCF nucleus modules,

� �
DCMT DISPLAY MEMORY NUCLEUS

� �

�� For more information about this command, refer to CA-IDMS System Tasks and
Operator Commands.

Because system nucleus modules are loaded at the beginning of the appropriate
program and reentrant pools, users can reload nucleus modules at run time, as
described in 2.8, “Dynamically reloading nucleus modules” on page 2-65. The size of
a program pool is automatically extended to accommodate these modules.

DC/UCF region components: The table that follows lists the components of the
DC/UCF region/partition in alphabetical order.

Component Description

Abend storage Storage available for processing run-time abends.

The amount of available abend storage is specified by
the ABEND STORAGE parameter of the system
generation SYSTEM statement.

Chapter 2. System Startup 2-59

2.7 What happens during startup

Component Description

CCE The CA-IDMS central control element, which contains
information used by CA-IDMS.

This table is built at startup time from values stored in
CVGDEFS-142 records in the dictionary by
database-related parameters defined on the SYSTEM
system generation statement.

CSA The common system area (CSA) vector table and
system-wide fields (for example, statistics fields).

CSVCAREA The system SVC parameter area, which is used by
DC/UCF as a general work area.

DC/UCF startup routine The routine that begins the DC/UCF system startup
process.

The module name is determined during the link-edit job
that creates the load module. Typical names are
DCUCFSYS, EXECDC, DCUCFGO, and DCEXEC.

The module contents depend on the operating system in
use. For details, see information presented earlier in this
chapter about DC/UCF system startup under your
operating system.

Central version DMCL The actual DMCL used by the DC/UCF system.

DCEAREA The dispatch control element area.

DDT The destination definition table, which contains
destination definition elements (DDEs) built from values
stored in the dictionary by system generation
DESTINATION statements.

DPEAREA The deadlock prevention element area.

ECBLIST The operating system's event control block (ECB) list.

EREAREA The external request unit area.

ESE External service element.

HIADDR The high 24-bit storage address of the DC/UCF system
after the startup routine returns the amount of storage
specified in the #DCPARM FREESTG parameter to the
operating system.

IDMSDBIO The CA-IDMS database I/O module.

IDMSDBMS The CA-IDMS database services module.

ILEAREA Internal lock element area.

2-60 CA-IDMS System Operations

2.7 What happens during startup

Component Description

Line driver modules Line driver modules for DC/UCF.

These modules are loaded at the beginning of the
appropriate program or reentrant pool. The pools are
increased automatically to accommodate these modules.

LKM Locking control blocks, which are a series of internally
managed control blocks, accessible only by the Lock
Manager, used to serialize resources such as database
key locks.

These control blocks are allocated at startup time before
the first 24-bit storage pool in a non-XA system and
before the first 31-bit storage pool in an XA system.
Any additional storage required by the Lock Manager at
run time is allocated from the storage pools.

The amount of storage allocated is dependent on the
value specified in the SYSLOCKS clause of the system
generation SYSTEM statement.

LTT The logical terminal definition table. This table contains
logical terminal elements (LTEs) for terminals that can
execute online applications.

This table is built at startup time from values stored in
the dictionary by system generation LTERM statements.

MPMODTBL The MPMODE table.

NLT The nucleus load table, which identifies the system
nucleus modules to the DC/UCF system.

Nucleus modules System nucleus modules that perform general system
services, such as program loading and storage
management.

Nucleus modules are loaded at the beginning of the
appropriate program or reentrant pool. The pools are
increased automatically to accommodate these modules.
To display a map of the nucleus modules, issue a
DCMT DISPLAY MEMORY NUCLEUS command.

OPT The startup options table, which contains DC/UCF
system-wide information.

This table is built at startup time from values stored in
the dictionary during system generation by the SYSTEM
statement. The startup options table also contains the
DC/UCF region map.

Chapter 2. System Startup 2-61

2.7 What happens during startup

Component Description

PDT The program definition table, which contains program
definition elements (PDEs) for programs in all program
pools.

This table is built at startup from values stored in the
dictionary by system generation PROGRAM statements.

Program pool (24 bit) The 24-bit program pool is defined by the PROGRAM
POOL parameter of the system generation SYSTEM
statement.

Program pool (31 bit) (XA systems only) This optional program pool is
defined by the XA PROGRAM POOL parameter of the
system generation SYSTEM statement.

PTT The physical terminal definition table. This table
contains information used to support online applications
that use physical terminals.

This table is built from values stored in the data
dictionary by system generation LINE and PTERM
statements.

QDT The queue definition table, which is built from values
stored in the dictionary by system generation QUEUE
statements. The QDT contains:

■ Queue definition elements (QDEs)

■ Queue control elements (QCEs)

■ Queue wait elements (QWEs)

RCA The resource control area, which contains elements used
to control system resources:

■ Resource link elements (RLEs)

■ Resource control elements (RCEs)

■ Deadlock prevention elements (DPEs)

■ Internal lock elements (ILEs)

RCEAREA Resource control element area

Reentrant pool (24 bit) A pool for 24-bit reentrant programs, which is defined
by the REENTRANT POOL parameter of the system
generation SYSTEM statement.

Reentrant pool (31 bit) (XA systems only) This optional reentrant program pool
is defined by the XA REENTRANT POOL parameter of
the system generation SYSTEM statement.

2-62 CA-IDMS System Operations

2.7 What happens during startup

Component Description

Resident programs An area that contains programs defined as resident at
system generation time by means of PROGRAM
statements.

Resident programs are loaded at the beginning of the
program pools immediately after the nucleus modules.

RHDCDEAD The deadlock manager.

RLEAREA Resource link element area.

RUA The internal run-unit allocation table, which contains:

■ A run-unit header (RUH) for each run-unit type

■ A run-unit element (RUE) for each run unit

SCAAREA The subtask control area.

SCT The storage control table area, which contains storage
control elements (SCEs) for all storage pools.

Service driver modules Service driver modules for DC/UCF. These include:

■ RHDCRUSD (run unit service driver)

■ RHDCLGSD (log service driver)

Service driver modules perform journal and log I/O
operations for other tasks, thus freeing those tasks to
continue execution.

If data sharing is in effect, these additional service
drivers are loaded:

■ RHDCCFSD (Coupling Facility service driver)

■ IDMSLMSD (Lock Manager service driver)

■ IDMSBDSD (DBIO service driver)

These modules are loaded at the beginning of the
appropriate program or reentrant pool. The pools are
increased automatically to accommodate these modules.

Storage pools (24 bit) The primary storage pool is defined by the STORAGE
POOL clause of the system generation SYSTEM
statement.

Additional 24-bit storage pools are optionally defined by
system generation STORAGE POOL statements.

Storage pools (31 bit) (XA systems only) These optional storage pools are
defined by system generation XA STORAGE POOL
statements (pools 128 to 254) and the XA STORAGE
POOL parameter of the SYSTEM statement (pool 255).

Chapter 2. System Startup 2-63

2.7 What happens during startup

Component Description

SVC module Actual SVC used by the DC/UCF system.

TCA The task control area, which contains:

■ Dispatch control elements (DCEs)

■ Task control elements (TCEs)

■ Task statistics area (TSA)

This table is built from values established by system
generation TASK statements.

TCEAREA Task control element area.

TDT The task definition table. This table contains task
definition elements (TDEs) for tasks that can be used to
invoke online components (for example, the subschema
compiler).

This table is built at startup time from values stored in
the dictionary by system generation TASK statements.

TRC The system trace area, which contains the system trace
buffers.

The size of this area is defined at system generation
time by the SYSTRACE ENTRIES parameter of the
SYSTEM statement. Each entry in this area requires 64
bytes.

2-64 CA-IDMS System Operations

2.8 Dynamically reloading nucleus modules

2.8 Dynamically reloading nucleus modules

You can reload DC nucleus modules without having to bring down the entire DC
system. For example, you do not need to bring the system down to apply
maintenance. You need only apply the changes to the load library and then reload the
affected modules.

You can dynamically reload any module with a PDE type of NUCLEUS or DRIVER,
except for the modules listed below:

 ■ IDMSDBIO

 ■ RHDCDBRC

 ■ RHDCMSTR

 ■ RHDCSCRN

 ■ RHDCOS00

If one of the modules being reloaded is a driver module that controls your terminal
(for example, a VTAM driver), you will be logged off of DC/UCF when the driver
module is recycled. You can sign back on after the driver module is reloaded.

Considerations: When dynamically reloading nucleus modules, be sure to:

■ Include all interdependent modules in the list of modules to be reloaded. For
example, if a nucleus module also requires a patch in the common system area
(CSA), your list must include both the modified nucleus module and the
RHDCCSA module.

■ Bring DC to an inactive state before beginning the reload operation. Perform the
following steps:

1. Disable long-running conversational tasks, such as the dynamic system
monitor (OPER), the online debugger, and the Realtime Monitor at sites
where the CA-IDMS/Performance Monitor is installed.

2. Cancel any long-running jobs that are already active.

The list of modules to be reloaded is associated with the logical terminal element
(LTE). If you sign off from your terminal, the list is deleted. You can determine the
PDE type by using the DCMT DISPLAY PROGRAM program-name command.

Example: This example shows the steps to take when reloading a group of nucleus
modules at DC/UCF system run time. This example assumes that you have already
made all necessary changes to the modules in the load library.

�� More information about the DCMT commands shown below is given in CA-IDMS
System Tasks and Operator Commands.

Chapter 2. System Startup 2-65

2.8 Dynamically reloading nucleus modules

To reload nucleus modules at run time:

1. Mark all necessary nucleus modules to new copy:

Input:

� �
 V9� ENTER NEXT TASK CODE:

dcmt vary nucleus module rhdccsa new copy

� �

Result:

� �
VARY NUCLEUS MODULE RHDCCSA NEW COPY

 IDMS DC283��1 V9� USER:LRL2 NUCLEUS MODULE RHDCCSA MARKED TO

 NEW COPY

� �

Input:

� �
 V9� ENTER NEXT TASK CODE:

dcmt vary nucleus module rhdcmisc new copy

� �

Result:

� �
VARY NUCLEUS MODULE RHDCMISC NEW COPY

 IDMS DC283��1 V9� USER:LRL2 NUCLEUS MODULE RHDCMISC MARKED TO

 NEW COPY

� �

If you make a mistake and need to unmark a previously marked module, issue a
DCMT VARY NUCLEUS MODULE CANCEL command.

2. Optionally display the list of nucleus modules to be reloaded:

Input:

� �
 V9� ENTER NEXT TASK CODE:

dcmt display nucleus module reload table

� �

Result:

� �
DISPLAY NUCLEUS MODULE RELOAD TABLE

��� DISPLAY OF NUCLEUS MODULE RELOAD TABLE ���

 RHDCCSA RHDCMISC

��� END OF DISPLAY ���

� �

3. Reload the nucleus modules:

Input:

2-66 CA-IDMS System Operations

2.8 Dynamically reloading nucleus modules

� �
 V9� ENTER NEXT TASK CODE:

dcmt vary nucleus reload

� �

Result:

� �
VARY NUCLEUS RELOAD

 IDMS DC283��3 V9� USER:LRL2 NUCLEUS MODULE RHDCCSA RELOADED

 IDMS DC283��3 V9� USER:LRL2 NUCLEUS MODULE RHDCMISC RELOADED

 IDMS DC283��6 V9� USER:LRL2 CSA PATCH AREAS SUCCESSFULLY RELOADED

 IDMS DC283��4 V9� USER:LRL2 CSA/NUCLEUS VECTOR TABLE UPDATED FOR

NUCLEUS MODULE RHDCMISC

� �

Chapter 2. System Startup 2-67

2-68 CA-IDMS System Operations

Chapter 3. Setting Up Interpartition Communication
and the SVC

3.1 Overview . 3-3
3.2 Communications architecture . 3-4
3.3 DC-to-DC communications . 3-6
3.4 Batch and non-DC/UCF programs . 3-8

3.4.1 OS/390 . 3-10
3.4.1.1 Generating an IDMSOPTI module 3-10
3.4.1.2 Defining a SYSCTL file . 3-14

3.4.2 VSE/ESA . 3-15
3.4.2.1 Generating an IDMSOPTI module 3-15
3.4.2.2 Defining a SYSCTL file . 3-20

3.4.3 VM/ESA . 3-21
3.4.3.1 Generating an IDMSOPTI module 3-21
3.4.3.2 Defining a SYSCTL file . 3-25
3.4.3.3 Using SYSIDMS to access the correct CV 3-26

3.4.4 BS2000/OSD . 3-26
3.4.4.1 Generating an IDMSOPTI module 3-26
3.4.4.2 Defining a SYSCTL File . 3-31

3.5 Generating the SVC . 3-32
3.5.1 OS/390 and MSP/EX . 3-32
3.5.2 VSE/ESA . 3-38
3.5.3 VM/ESA . 3-44
3.5.4 BS2000/OSD . 3-45

Chapter 3. Setting Up Interpartition Communication and the SVC 3-1

3-2 CA-IDMS System Operations

3.1 Overview

 3.1 Overview

DC/UCF resides in its own region/partition. Online application programs executed by
using DC/UCF execute within the DC/UCF region/partition. Additionally, DC/UCF
online compilers (such as the online system generation compiler), development tools
(such as ADSA and OLM), and database procedures execute within the DC/UCF
region/partition.

Certain functions of the online DC/UCF system require the use of a special SVC
which is supplied with DC/UCF software.

Online applications executing under other DC/UCF systems, batch application
programs, and programs executed under TP monitors other than DC execute in
regions/partitions external to the DC/UCF region/partition. Since CA-IDMS resides in
the DC/UCF region/partition, all CA-IDMS database requests issued by these programs
and all responses must be passed across regions/partitions.

The remainder of this chapter describes the common communications architecture used
to pass database requests from one region/partition to another and provides specific
information for:

■ DC to DC communications

■ Batch to DC communications

■ CICS to DC communications

Chapter 3. Setting Up Interpartition Communication and the SVC 3-3

3.2 Communications architecture

 3.2 Communications architecture

The DC/UCF communications architecture was designed to separate applications from
the communications environment. That is, your application does not need to include
communications requirements; for example, the application does not need to designate
the node in which a database resides. The architecture is based on the client/server
model:

The mandate of this model is that clients and servers must be connected only by a
well-defined message protocol. One client or server can have no explicit information
about other clients/servers.

Data request processing: When an application issues a request for database
services, each request is routed through four communications layers on both the client
side and the server side, as shown in the figure below:

Client Requests information or services

Server Provides information or services

Communication layers: The table below describes each layer of the
communications architecture:

3-4 CA-IDMS System Operations

3.2 Communications architecture

The name server table: The name server table is used by the data transfer services
layer to determine where to route information. The table contains information about
the location of the database to be accessed. Depending on the environment in which
your application is executing, the name of the database to be accessed is provided in
different ways:

Layer Description

Data Services
Interface (DSI)

Provides a service-specific interface between an application
and particular service (for example, SQL database services).
The DSI creates a data transfer services block (DTSB) that
contains routing information, the name of the target resource,
the data, and data format descriptors and forwards the DTSB
to the data transfer services layer.

Data Transfer
Services (DTS)

Provides the service-independent application program interface
(API) for client/server processing. This layer uses a name
server table to determine where to pass the requested
information.

Distributed Node
Services (DNS)

Determines how the information is to be sent; that is, using:

■ An SVC (used to communicate between the client and a
DC/UCF system within the same CPU)

■ CCI (CA's communications services used to communicate
between DC/UCF systems in different CPUs)

Communications
drivers

Send the information across:

 ■ The SVC

■ The UCF line driver

 ■ CCI

Environment How a database name is provided

DC Through the NODE and RESOURCE TABLE system
generation statements

Batch, CICS, and
other TP-monitors

Through the IDMSOPTI module, SYSCTL file, and
SYSIDMS parameter file

Chapter 3. Setting Up Interpartition Communication and the SVC 3-5

3.3 DC-to-DC communications

 3.3 DC-to-DC communications

You use DC-to-DC communication when a program executing online in one DC/UCF
system needs access to a database controlled by another DC/UCF system.

�� This section describes how database requests are transferred between DC/UCF
systems. It does not describe distributed applications using UCF or APPC. For
information about distributed applications, see Chapter 4, “Distributed Applications
Using UCF or APPC”

System generation table definitions: To implement DC-to-DC communication,
you must define two types of tables using the system generation compiler:

Database request processing: When an application issues a request for database
services, the request is passed to the data services interface (DSI). If the request
cannot be serviced on the local node, the request is passed to the data transfer services
layer of the communications architecture. This layer uses the name server table, which
contains the information provided by the system generation parameters listed above.
The request is transferred from node to node (using the distributed node services
layer), until it reaches the node that controls the database.

Distributed processing: There are many ways to distribute database and
application processing across DC/UCF systems. For example:

■ You can define one DC/UCF system to manage the front-end processing (terminal
management, etc.) of applications and another DC/UCF system to manage the
CA-IDMS database processing

or

■ You can distribute the front-end processing of applications across multiple
DC/UCF systems and define another DC/UCF system to manage the CA-IDMS
database processing for those applications. You might distribute applications
based on geographic location, type of application, or size of application.

Type of table Sysgen statement Description

NODE table NODE Describes what DC/UCF systems can
communicate with this DC/UCF system
and what communication method to use
(for example, the common
communications interface (CCI) or an
SVC); define one NODE statement for
every node with which a given DC/UCF
system can communicate

RESOURCE
NAME table

RESOURCE
TABLE

Identifies on what node a database
resides; define one resource entry for
each remote database and for each local
database

3-6 CA-IDMS System Operations

3.3 DC-to-DC communications

You decide the best way to set up multiple DC/UCF systems to meet the goals of your
organization and maximize the use of your computing resources. The diagram below
shows the components of multiple DC/UCF regions:

By distributing application and database processing across multiple DC/UCF systems,
you minimize the constraints on system resources such as CPU and virtual storage.
Additionally, by isolating database or application processing on separate DC/UCF
systems, you can:

■ Exercise more control over the processing of strategic applications

■ Insulate database processing from application processing

■ Insulate applications from each other

■ Minimize the effects of processing outages across the user environment

Managing the tables dynamically: You can make a new copy of the NODE
table or RESOURCE NAME table available to the DC/UCF system dynamically, by
following these steps:

1. Re-generate the system with the new NODE or RESOURCE NAME table
parameters

2. Dynamically reload the NODE table or RESOURCE NAME table by entering
DCMT VARY RESOURCE TABLE NEW COPY

�� For more information about this DCMT command, refer to CA-IDMS System
Tasks and Operator Commands.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-7

3.4 Batch and non-DC/UCF programs

3.4 Batch and non-DC/UCF programs

Batch programs and non-DC/UCF programs pass CA-IDMS central version database
requests and receive responses through the CA-IDMS SVC (supervisor control
routine). The figure below shows how the SVC passes requests and data between
programs executed in other regions/partitions and DC/UCF. In this figure, The
CA-IDMS SVC passes program requests for database services and DC/UCF responses
across regions/partitions. Program A is an online program executed without DC/UCF
services. Program B is a batch program:

In OS/390 and VSE/ESA systems, an actual SVC is used. In VM/ESA and
BS2000/OSD systems, equivalent modules perform CA-IDMS SVC communication
services. The remainder of this overview uses the term SVC to refer to both types of
definitions.

Required interface modules: Batch programs also require interface modules in
order to communicate with the SVC:

■ The batch interface allows batch programs to communicate with the SVC.

■ TP-interface modules tailored to each supported TP monitor allow (non-DC/UCF)
online programs to communicate with the SVC.

These interface modules are installed at DC/UCF system installation time.

3-8 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

To make the optional 10.2 services batch interface available, programs that were not
linked in a 10.2 system must be linked with the IDML load module, and the
IDMSB102 load module must be in a STEPLIB specified in the batch job JCL.

�� For more information about using the optional 10.2 services batch interface, refer to
CA-IDMS Navigational DML Programming.

Since batch programs and non-DC/UCF programs execute outside of DC/UCF, the
interface modules for these types of programs must provide DC/UCF access
information when they pass program requests for CA-IDMS database services to the
SVC. Basically, they must specify:

■ The type of database services (central version or local mode) that the program will
use

■ The database that the program will access

■ The DC/UCF system the program will use when using central version services

■ The DC/UCF system to which the program will pass database requests when using
central version services

Database specifications: When batch programs execute, the batch interface
derives this information from a combination of sources:

■ From the IDMSOPTI module (if any) link edited with the program (for non-SQL
access only).

■ From the SYSCTL file specified in execution JCL.

■ From alternative database and node specifications made within the SYSIDMS
parameter file or within the program itself.

■ From user exit 23 specifications. Exit 23 can intercept database specifications for
the program during run unit initiation (non-SQL access only)

�� For information about the SYSIDMS parameter file, see CA-IDMS Database
Administration.

TP monitor overrides: For non-DC/UCF online programs, the TP front-end
interface module passes program information to the SVC. This information is
specified when the TP front-end module is generated. At run time, this information
can be overridden, when appropriate, by any of the following specifications:

■ Program database and node specifications

■ Information passed by user exit 23 (non-SQL access only)

Database access: The table below summarizes how DC/UCF decides which
database to access given a DBNAME specification in the program or a SYSIDMS
parameter, in IDMSOPTI, and in the SYSTEM statement SYSCTL clause. The same
rules apply to databases that reside on remote nodes.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-9

3.4 Batch and non-DC/UCF programs

Program/SYSIDMS
DBNAME �1�

IDMSOPTI
DBNAME

SYSCTL
DBNAME

DC/UCF uses

Specified ALWAYS ALWAYS SYSCTL parameters

Specified ALWAYS DEFAULT IDMSOPTI parameters

Specified ALWAYS NULL IDMSOPTI parameters

Specified DEFAULT ALWAYS SYSCTL parameters

Specified DEFAULT DEFAULT Program specification

Specified DEFAULT NULL Program specification

Specified NULL ALWAYS SYSCTL parameters

Specified NULL DEFAULT Program specification

Specified NULL ALWAYS SYSCTL parameters

Not specified ALWAYS DEFAULT IDMSOPTI parameters

Not specified ALWAYS NULL IDMSOPTI parameters

Not specified ALWAYS ALWAYS SYSCTL parameters

Not specified DEFAULT DEFAULT IDMSOPTI parameters

Not specified DEFAULT NULL IDMSOPTI parameters

Not specified NULL ALWAYS SYSCTL parameters

Not specified NULL DEFAULT SYSCTL parameters

Not specified NULL NULL Program's subschema

Note:
�1� - If both the program and SYSIDMS parameter file specify a DBNAME
parameter, the program specification overrides the SYSIDMS parameter file
specification.

 3.4.1 OS/390

This section contains OS/390 information about:

■ Generating an IDMSOPTI module

■ Defining a SYSCTL file

3.4.1.1 Generating an IDMSOPTI module

You can define IDMSOPTI modules for batch programs that require non-SQL database
services. To generate an IDMSOPTI module:

1. Code an IDMSOPTI macro

2. Assemble and link edit the IDMSOPTI module

3-10 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

To make IDMSOPTI specifications available to a batch program, link edit the
IDMSOPTI module with the program. The IDMSOPTI module specifies whether
the program uses CA-IDMS central version or local mode services. When the
program uses central version services, IDMSOPTI can provide parameters that
further determine which DC/UCF system is to be accessed.

 IDMSOPTI syntax

��── IDMSOPTI ─┬─────────────────────────┬────────────────────────────────────�

└─ SVC= ─┬─ svc-number ─┬─┘

└─ � ← ────────┘

 �──┬───────────────────────────┬───�

└─ ,CVNUM= ─┬─ cv-number ─┬─┘

└─ � ← ───────┘

 �──┬─────────────────────────┬───�

└─ ,CENTRAL= ─┬─ NO ────┬─┘

├─ ONLY ──┤

└─ YES ← ─┘

 �──┬─────────────────────────┬───�

└─ ,SYSCTL=sysctl-ddname ─┘

 �──┬───┬─────────────────────────────�

└─ ,NODENAM=(nodename ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 �──┬───┬─────────────────────────��

└─ ,DBNAME=(database-name ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 IDMSOPTI parameters

SVC
Specifies the number of the CA-IDMS SVC through which the program will
communicate with the DC/UCF system. Svc-number must be an integer in the
range 0 through 255.

Considerations: To allow users to utilize the CA-IDMS SVC number in a
SYSCTL file at program execution, include the SYSCTL parameter (below) in the
IDMSOPTI macro.

CVNUM
Identifies the DC/UCF system to the CA-IDMS SVC.

Considerations: Cv-number must be the same value (0 through 255) specified by
the CVNUMBER parameter of the system generation SYSTEM statement for the
system. Information on the SYSTEM statement is given in CA-IDMS System
Tasks and Operator Commands.

CENTRAL
Specifies whether the program will use CA-IDMS central version services.

NO
The program will never use CA-IDMS central version services.

ONLY
The program will always require CA-IDMS central version services.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-11

3.4 Batch and non-DC/UCF programs

YES
The program can use either central version or local mode services:

■ The program will use central version services when the execution JCL for
the application specifies a SYSCTL file.

■ The program will use local mode services when JCL that executes the
application does not specify a SYSCTL file.

If you code CENTRAL=YES, be sure to include the SYSCTL parameter
(below) in the IDMSOPTI module. At run time, the SYSCTL ddname
specified in JCL for the application must match the ddname specified in the
IDMSOPTI module.

SYSCTL
Specifies the ddname of a SYSCTL file.

Considerations: You should include the SYSCTL parameter when either of the
following conditions applies:

■ Users can execute the program using either central version or local mode
services (that is, CENTRAL=YES). For this to occur, the SVC parameter
must either be omitted or set to 0.

■ Users can execute the program on different DC/UCF systems. You can
optionally specify a default DC/UCF system in the IDMSOPTI CVNUM
parameter. At run time, a user can override the default system, using the
system specified in the SYSCTL file. The user must specify the SYSCTL
ddname named in the IDMSOPTI module for the program.

�� For more information on SYSCTL files, see the considerations listed in 3.4.1.2,
“Defining a SYSCTL file” on page 3-14.

NODENAM
Specifies the one- to eight-character name of a system defined to your DC/UCF
communications network.

ALWAYS/DEFAULT specifies conditions under which programs link edited with
this IDMSOPTI module will pass database requests to the named system node.

ALWAYS
The program will pass database requests to the named system unless the
named system is overridden by a SYSCTL file.

DEFAULT
The program will pass database requests to the named system only if both of
the following are true:

■ The program does not name a remote system.

■ The SYSCTL file either does not name a remote system or specifies
DEFAULT along with the remote system that it names.

3-12 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

DBNAME
Specifies a database name.

This specification may be overridden. For override conditions, see the table in
3.4, “Batch and non-DC/UCF programs” on page 3-8.

ALWAYS
The program will use the named database unless the named database is
overridden by a SYSCTL file.

DEFAULT
The program will use the named database only if both of the following are
true:

■ The program does not name a database.

■ The SYSCTL file either does not name a database or specifies
DEFAULT along with the database that it names.

IDMSOPTI usage: The table below shows the IDMSOPTI macro parameters
appropriate for various programs that request CA-IDMS database services from another
region.

Program execution IDMSOPTI strategy IDMSOPTI syntax

Always uses central
version database
services on the same
DC/UCF system

Assemble an
IDMSOPTI module
for programs that use
the DC/UCF system.

IDMSOPTI SVC=

 svc-number

 ,CVNUM=cv-number

 ,CENTRAL=ONLY

Uses central version
database services on
various DC/UCF
systems

Optionally assemble
an IDMSOPTI
module. �1�

IDMSOPTI SYSCTL=

 sysctl-ddname

 ,CENTRAL=ONLY

Uses central version
services on a default
DC/UCF system that
users can override with
a SYSCTL file

Assemble an
IDMSOPTI module.

IDMSOPTI SYSCTL=

 sysctl-ddname

 ,SVC=svc-number

 ,CVNUM=cv-number

 ,CENTRAL=ONLY

Always uses local
mode database services

Optionally assemble
an IDMSOPTI
module.

IDMSOPTI

 CENTRAL=NO

Sometimes uses central
version and sometimes
uses local mode
database services

Optionally assemble
an IDMSOPTI
module. �1�

IDMSOPTI SYSCTL=

 sysctl-ddname

 CENTRAL=YES

Note:
�1� - A SYSCTL data set can provide the necessary communication information at
program execution time.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-13

3.4 Batch and non-DC/UCF programs

Assembling and link editing the IDMSOPTI module: You can define several
different IDMSOPTI modules for a given system. You must give each IDMSOPTI
module a unique name. To assemble and link edit an IDMSOPTI module, use JCL
statements based on the sample statements shown below.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

 OS/390 IDMSOPTI

// EXEC ASMA9�

//ASM.SYSLIB DD DSN=idms.srclib,DISP=SHR

//ASM.SYSIN DD �

 IDMSOPTI macro

 END

//LKED.SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//LKED.SYSIN DD �

 NAME idmsopti(R)

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

idmsopti data set name of the IDMSOPTI module

3.4.1.2 Defining a SYSCTL file

You can define one or more SYSCTL files to provide alternative information for
programs that require CA-IDMS database services while executing in another region.
This information includes the number of the CA-IDMS SVC to be used. SYSCTL
specifications override those given by batch and TP-monitor interface modules and
IDMSOPTI modules.

You define the ddname for a SYSCTL file and determine the specifications to be
contained in the SYSCTL file by using the DC/UCF system generation SYSTEM
statement. At system startup time, DC/UCF copies the specifications made in the
SYSTEM statement to the SYSCTL file.

At sites where more than one DC/UCF system runs concurrently, each SYSCTL file
must have a unique data set name. However, all systems can use the same ddname for
the SYSCTL file.

�� For more information on the SYSTEM statement, refer to CA-IDMS System Tasks
and Operator Commands.

Accessing a SYSCTL file: To use a SYSCTL file in conjunction with programs
executed in other regions, the user must either:

■ Specify a ddname of SYSCTL in the batch application's execution JCL. The
SYSCTL DD statement should point to a data set with the same data set name
used by the DC/UCF system for its SYSCTL data set.

3-14 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

■ If the program is linked with IDMSOPTI, the ddname used for the SYSCTL data
set in the batch application's execution JCL must match the ddname specified for
the SYSCTL in the IDMSOPTI module. The data set name pointed to by this
ddname must match the data set name used by the DC/UCF systems for its
SYSCTL data set.

 3.4.2 VSE/ESA

This section contains VSE/ESA information about:

■ Generating an IDMSOPTI module

■ Defining a SYSCTL file

3.4.2.1 Generating an IDMSOPTI module

You can define an IDMSOPTI module for batch programs that require non-SQL
database services. To generate an IDMSOPTI module:

1. Code an IDMSOPTI macro

2. Assemble and catalog the IDMSOPTI module

�� For more information about IDMSOPTI modules, see 3.1, “Overview” on page 3-3.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-15

3.4 Batch and non-DC/UCF programs

 IDMSOPTI syntax

��── IDMSOPTI ─┬─────────────────────────┬────────────────────────────────────�

└─ SVC= ─┬─ svc-number ─┬─┘

└─ � ← ────────┘

 �──┬───────────────────────────┬───�

└─ ,CVNUM= ─┬─ cv-number ─┬─┘

└─ � ← ───────┘

 �──┬───────────────────────────┬───�

└─ ,SYSCTL=sysctl-filename ─┘

 �──┬────────────────────────────────┬──�

└─ ,UPSI=upsi-bit-switch-number ─┘

 �──┬─────────────────────────┬───�

└─ ,CENTRAL= ─┬─ NO ────┬─┘

├─ ONLY ──┤

└─ YES ← ─┘

 �──┬───┬─────────────────────────────�

└─ ,NODENAM=(nodename ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 �──┬───┬─────────────────────────��

└─ ,DBNAME=(database-name ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 IDMSOPTI parameters

SVC
Specifies the number of the CA-IDMS SVC through which the program will
communicate with the DC/UCF system. The value specified for svc-number
should be an integer in the range 114 through 255.

Considerations: To allow users to utilize the CA-IDMS SVC number in a
SYSCTL file at program execution, include the SYSCTL parameter (below) in the
IDMSOPTI macro.

CVNUM
Identifies the DC/UCF system to the CA-IDMS SVC.

Considerations: CVNUM must specify the number (0 through 255) given by the
CVNUMBER parameter of the system generation SYSTEM statement for the
system.

�� Information on the SYSTEM statement is given in CA-IDMS System Tasks and
Operator Commands.

3-16 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

SYSCTL
Specifies the filename of a SYSCTL file. Sysctl-filename is a seven-character
filename.

Considerations: If you use a SYSCTL file to specify SVC information, you won't
need to relink programs that use that SVC when you subsequently modify the
SVC.

Since the SYSCTL file is used system-wide, the SYSCTL filename must represent
a logical unit assignment that is supported by all partitions in the system.

When executing a batch application, the user must specify the SYSCTL filename
by using the DLBL statement in the batch application's JCL. If this parameter is
omitted from the JCL, the system default SYSCTL filename (specified in the
system generation SYSTEM statement) is used at run time.

UPSI
Defines which bit switch in the UPSI byte will allow batch programs to use
CA-IDMS central version services at run time.

Upsi-bit-switch-number specifies a bit string. Up to eight bit values can be
specified in the string. The position where you code a single 1 (one) in this bit
string determines the location of the central version bit switch. Positions before
the 1 (if 1 is not the first bit specified) must be coded as either zeros or blanks.
Trailing blanks are treated as zeros.

For example, to specify that the fifth position in the UPSI byte is the central
version switch, you would make the following specification in the IDMSOPTI
UPSI parameter:

UPSI=����1

In this example, the application at run time can use central version services if a 1
(one) is coded in the fifth position in the UPSI byte of the program's JCL.
Otherwise, the application uses CA-IDMS local mode services.

Considerations:

■ When CENTRAL=YES (see below) is coded for the IDMSOPTI module, it is
particularly useful to code an UPSI value. Run-time users can then use the
UPSI switch to determine whether the program uses central version or local
mode services.

■ When a SYSCTL file is specified in the program JCL, the run-time UPSI
setting is ignored and the program uses central version services, based on
information from the SYSCTL file.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-17

3.4 Batch and non-DC/UCF programs

CENTRAL
Specifies whether the program will use CA-IDMS central version services.

NO
The program will never use CA-IDMS central version services.

ONLY
The program will always require CA-IDMS central version services.

YES
The program can use either central version or local mode services, depending
on specifications made in the JCL for the batch application:

■ The program uses central version services when either a SYSCTL file or
the appropriate UPSI byte is specified in the JCL.

■ The program uses local mode services when neither of these
specifications is made in the JCL.

NODENAM
Specifies a one- to eight-character name of a system defined to your DC/UCF
communications network.

ALWAYS
The program will pass database requests to the named system unless the
named system is overridden by a SYSCTL file.

DEFAULT
The program will pass database requests to the named system only if both of
the following are true:

■ The program does not name a remote system.

■ No database is specified by a SYSCTL file, or a SYSCTL file specifies
DEFAULT along with the database that it names.

DBNAME
Specifies a database name. This specification may be overridden. For override
conditions, see the table in 3.4, “Batch and non-DC/UCF programs” on page 3-8.

ALWAYS
The program will use the named database unless the named database is
overridden by a SYSCTL file.

DEFAULT
The program will use the named database only if both of the following are
true:

■ The program does not name a database.

■ No database name is given by a SYSCTL file, or the SYSCTL file
specifies DEFAULT along with the database that it names.

3-18 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

IDMSOPTI usage: The table below shows IDMSOPTI macro parameters
appropriate for various programs that request CA-IDMS database services from another
partition.

Assembling and cataloging the IDMSOPTI module: You can define several
different IDMSOPTI modules for a given system. You must give each IDMSOPTI
module a unique name.

To assemble and catalog the IDMSOPTI module, use JCL statements based on the
sample statements shown below:

�� Any modifications to CA-IDMS load libraries should be applied using MSHP. For
instructions on how to assemble and link edit using MSHP, refer to CA-IDMS
Installation and Maintenance Guide - VSE/ESA.

Program execution IDMSOPTI strategy IDMSOPTI syntax

Always uses central
version database
services on the same
DC/UCF system

Assemble an
IDMSOPTI module
for programs that
execute on the
DC/UCF system.

IDMSOPTI SVC=

svc-number

 ,CVNUM=cv-number

 ,CENTRAL=ONLY

Uses central version
database services at
various DC/UCF
systems �2�

Optionally assemble
an IDMSOPTI
module. �1�

IDMSOPTI SYSCTL=

 sysctl=filename

 ,CENTRAL=ONLY

Uses central version
services provided by a
default DC/UCF system
that users can override
with a SYSCTL file
�2�

Assemble an
IDMSOPTI module.

IDMSOPTI SYSCTL=

 sysctl-filename

 ,SVC=svc-number

 ,CVNUM=cv-number

 ,CENTRAL=ONLY

Always uses local
mode database services

Optionally assemble
an IDMSOPTI
module.

IDMSOPTI

CENTRAL= NO

Sometimes uses central
version and sometimes
uses local mode
database services �2�

Assemble an
IDMSOPTI module.

IDMSOPTI SYSCTL=

 sysctl-filename

Note:
�1� - A SYSCTL data set can provide the necessary communication information at
program execution time.
�2� - The SYSCTL statement can be omitted from the IDMSOPTI module if the
system-wide default is preferred.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-19

3.4 Batch and non-DC/UCF programs

 VSE/ESA IDMSOPTI

Step 1: Assemble

// OPTION DECK

// DLBL idmslib,'idms.library',2�99/365

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// EXEC ASMA9�

 IDMSOPTI macro

 END

/�

Step 2: Catalog

// DLBL idmslib,'idms.library',2�99/365

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// EXEC LIBR

 ACCESS S=(idmslib.sublib)

CATALOG idmsopti.OBJ REPLACE=YES

object deck output from previous step

/�

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file ID associated with the file containing CA-IDMS
modules

idmsopti name of the IDMSOPTI relocatable module

nnnnnn volume serial number of the library

ssss starting track (CKD) or block (FBA) of disk extent

3.4.2.2 Defining a SYSCTL file

You can define one or more SYSCTL files to provide alternative information for
programs that require CA-IDMS database services while executing in another partition.
This information includes the number of the CA-IDMS SVC to be used. SYSCTL
specifications override those given by batch and TP-monitor interface modules and
IDMSOPTI modules.

You define the filename for a SYSCTL file and determine the specifications to be
contained in the SYSCTL file by using the DC/UCF system generation SYSTEM
statement. At system startup time, DC/UCF copies the specifications made in the
SYSTEM statement to the SYSCTL file.

At sites where more than one DC/UCF system runs concurrently, each SYSCTL file
must have a unique file ID. However, all systems can use the same filename for the
SYSCTL file.

�� For more information on the SYSTEM statement, refer to CA-IDMS System Tasks
and Operator Commands.

3-20 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

Accessing a SYSCTL file: To use a SYSCTL file in conjunction with programs
executed in other regions, the user must either:

■ Specify a filename or SYSCTL in the batch application's execution JCL. The
SYSCTL filename should point to a file ID with the same file ID used by the
DC/UCF system for its' SYSCTL file.

■ If the program is linked with IDMSOPTI, the filename used for the SYSCTL file
in the batch application's execution JCL must match the filename specified for the
SYSCTL in the IDMSOPTI module. The file ID pointed to by this filename must
match the file ID used by the DC/UCF systems for its SYSCTL file.

 3.4.3 VM/ESA

This section contains VM/ESA information about:

■ Generating an IDMSOPTI module

■ Defining a SYSCTL file

3.4.3.1 Generating an IDMSOPTI module

You can define IDMSOPTI modules for batch programs that require non-SQL database
services. For more information, see the 3.1, “Overview” on page 3-3.

�� For more information about IDMSOPTI with batch programs under VM/ESA and
dynamic IDMSOPTI generation, refer to CA-IDMS Installation and Maintenance Guide
- VM/ESA.

To prepare an IDMSOPTI module:

1. Code an IDMSOPTI macro and save the macro statements in a file with a file
type of ASSEMBLE.

2. Assemble the IDMSOPTI module and put it in a user TXTLIB library.

Multiple IDMSOPTI macros: You can code several different IDMSOPTI macros
for a given system. Each IDMSOPTI macro must have a unique name. However,
when you add the IDMSOPTI module to a TXTLIB library, you must give the library
member the name IDMSOPTI. Therefore, each IDMSOPTI module must reside in its
own TXTLIB library.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-21

3.4 Batch and non-DC/UCF programs

 IDMSOPTI syntax

��── IDMSOPTI ─┬─────────────────────────┬────────────────────────────────────�

└─ SVC= ─┬─ svc-number ─┬─┘

└─ � ← ────────┘

 �──┬──┬────────────────────────────�

└─ ,CVMACH= ─┬─ dc/ucf-virtual-machine-id ─┬─┘

└─ � ← ───────────────────────┘

 �──┬───────────────────────────┬───�

└─ ,CVNUM= ─┬─ cv-number ─┬─┘

└─ � ← ───────┘

 �──┬────────────────────────┬──�

└─ ,CENTRAL= ─┬─ NO ────┬┘

├─ ONLY ──┤

└─ YES ← ─┘

 �──┬───────────────────────────┬───�

└─ ,SYSCTL=sysctl-filename ─┘

 �──┬───┬─────────────────────────────�

└─ ,NODENAM=(nodename ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 �──┬───┬─────────────────────────��

└─ ,DBNAME=(database-name ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 IDMSOPTI parameters

SVC
Specifies the number of the CA-IDMS SVC that will be used for communication
between the application program in a VM/ESA virtual machine and DC/UCF
executing as a guest operating system.

The SVC parameter does not apply when the DC/UCF system to be accessed is
running in a VM/ESA virtual machine.

CVMACH
Specifies the user id of the virtual machine in which the DC/UCF system is
executing. If you specify this parameter, you must also specify
CENTRAL=ONLY.

CVNUM
Identifies the DC/UCF system (within the named virtual machine) to the
CA-IDMS SVC.

Considerations:

■ For VM/ESA batch programs communicating with DC/UCF in a VM/ESA
machine, the CVNUM defaults to 0 (zero).

■ For VM/ESA batch programs communicating with DC/UCF in a guest
operating system, the CVNUM value must be the CVNUMBER of the
DC/UCF system.

3-22 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

CENTRAL
Specifies whether the application will use CA-IDMS central version or local mode
database services:

NO
Specifies that the application will always use local mode services.

ONLY
Specifies that the application will always use central version services.

YES
Specifies the program can use either central version or local mode services,
depending on specifications made in the JCL for the batch application:

■ The program uses central version services when a SYSCTL file is
specified in the JCL

■ The program uses local mode services when a SYSCTL file is not
specified in the JCL

SYSCTL
Identifies the ddname of the SYSCTL file.

Considerations: You should include the SYSCTL parameter when users can
execute the program on different DC/UCF systems. You can optionally specify a
default DC/UCF system in the IDMSOPTI CVNUM and CVMACH parameters.
At run time, a user can override the default system, using the system specified in
the SYSCTL file. The user must specify the SYSCTL ddname named in the
IDMSOPTI module for the program.

�� For more information on SYSCTL files, see the considerations listed in 3.4.3.2,
“Defining a SYSCTL file” on page 3-25.

NODENAM
Specifies the one- to eight-character name of a system defined to your DC/UCF
communications network.

ALWAYS
The program will pass database requests to the named system unless the
named system is overridden by a SYSCTL file.

DEFAULT
The program will pass database requests to the named system only if both of
the following are true:

■ The program does not name a remote system.

■ The SYSCTL file either does not name a remote system or specifies
DEFAULT along with the remote system that it names.

DBNAME
Specifies a database name.

This specification may be overridden. For override conditions, see the table in
3.4, “Batch and non-DC/UCF programs” on page 3-8.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-23

3.4 Batch and non-DC/UCF programs

ALWAYS
The program will use the named database unless the named database is
overridden by a SYSCTL file.

DEFAULT
The program will use the named database only if both of the following are
true:

■ The program does not name a database.

■ The SYSCTL file either does not name a database or specifies
DEFAULT along with the database that it names.

IDMSOPTI usage: The table below shows IDMSOPTI macro parameters
appropriate for various programs that request CA-IDMS database services from another
virtual machine.

Program execution IDMSOPTI strategy IDMSOPTI syntax

Always uses central
version database
operations on the same
DC/UCF system

Assemble an
IDMSOPTI module
for programs that
execute on the
DC/UCF system.

IDMSOPTI CENTRAL=

 ONLY

 ,CVMACH=

 dc/ucf-virtual-machine-id

 ,CVNUM=cv-number

 ,SVC=svc-number

Uses central version
database services on
various DC/UCF
systems

Optionally assemble
an IDMSOPTI
module. �1�

IDMSOPTI SYSCTL=

 sysctl-ddname

 ,CENTRAL=ONLY

Uses central version
services provided by a
default DC/UCF system
that users can override
with a SYSCTL file
�2�

Assemble an
IDMSOPTI module.

IDMSOPTI SYSCTL=

 sysctl-ddname

 ,SVC= svc-number

 ,CVNUM=cv-number

 ,CVMACH= dc/ucf-

 virtual-machine-id

 ,CENTRAL=ONLY

Always uses local
mode database services

Optionally assemble
an IDMSOPTI
module.

IDMSOPTI

 CENTRAL=NO

Sometimes uses central
version and sometimes
uses local mode
database services

Optionally assemble
an IDMSOPTI
module. �1�

IDMSOPTI SYSCTL=

 sysctl-ddname

 CENTRAL=YES

Note:
�1� - A SYSCTL data set can provide the necessary communication information at
program execution time.
�2� - The SYSCTL statement can be omitted from the IDMSOPTI module if the
system-wide default is preferred.

3-24 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

Assembling the IDMSOPTI module: Save the IDMSOPTI macro that you code
in a file with a filetype of ASSEMBLE. Then, assemble an IDMSOPTI module, using
the following commands.

 VM/ESA IDMSOPTI

GLOBAL MACLIB IDMSLIB

FILEDEF TEXT DISK optiobj TEXT a

ASSEMBLE optiparm (NODECK OBJECT

Note: When you add the assembled module to the TXTLIB library, the library
member name must be IDMSOPTI.

optiobj ddname of the assembled IDMSOPTI module

optiobj TEXT a file ID of the assembled IDMSOPTI module

optiparm ddname of the file containing the IDMSOPTI macro
parameters (the filetype must be ASSEMBLE)

3.4.3.2 Defining a SYSCTL file

You can define one or more SYSCTL files to provide alternate information for
programs that require CA-IDMS database services while executing in another virtual
machine. This information includes the number of the CA-IDMS SVC to be used.
SYSCTL specifications override those given by batch and TP-monitor interface
modules and IDMSOPTI modules.

You define a ddname for a SYSCTL file and determine the specifications to be
contained in the SYSCTL file by using the DC/UCF system generation SYSTEM
statement. At system startup time, DC/UCF copies the specifications made in the
SYSTEM statement to the SYSCTL file.

At sites where more than one DC/UCF system runs concurrently, each SYSCTL file
must have a unique file ID. However, all systems can use the same ddname for the
SYSCTL file.

�� For more information on the SYSTEM statement, refer to CA-IDMS System Tasks
and Operator Commands.

Accessing a SYSCTL file: To use a SYSCTL file in conjunction with programs
executed in other virtual machines, the user must either:

■ Specify a ddname of SYSCTL in the batch application's execution JCL. The
SYSCTL ddname should point to a file with the same file ID used by the
DC/UCF system for its SYSCTL file.

■ If the program is linked with IDMSOPTI, the ddname used for the SYSCTL file
in the batch application's execution JCL must match the ddname specified for the
SYSCTL in the IDMSOPTI module. The file ID pointed to by this ddname must
match the file ID used by the DC/UCF systems for its SYSCTL file.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-25

3.4 Batch and non-DC/UCF programs

Previously existing batch programs that were link edited with an IDMSOPTI module
will continue to work as before unless a SYSCTL file is included in the run-time
execution JCL. SYSCTL specifications override those in an IDMSOPTI module.

3.4.3.3 Using SYSIDMS to access the correct CV

Another way of directing a batch job to a DC/UCF system is by coding the following
SYSIDMS parameters in a file and pointing the SYSIDMS DD statement to that file.

CVMACH
Specifies the user id of the virtual machine in which the DC/UCF system is
executing.

CVNUM
Identifies the DC/UCF system (within the named virtual machine) to the
CA-IDMS SVC.

Considerations:

For VM/ESA batch programs communicating with DC/UCF in a VM/ESA
machine, the CVNUM should not be coded or the value should be set to zero.

For VM/ESA batch programs communicating with DC/UCF in a guest
operating system, the CVNUM value must be the CVNUMBER of the
DC/UCF system.

NODENAM
Specifies the one- to eight-character name of a system defined to your DC/UCF
communications network.

DBNAME
Specifies the database name on the target DC/UCF system.

�� For more information on using SYSIDMS parameter, refer to CA-IDMS Database
Administration.

 3.4.4 BS2000/OSD

This section contains BS2000/OSD information about:

■ Generating an IDMSOPTI module

■ Defining a SYSCTL file

3.4.4.1 Generating an IDMSOPTI module

You can define an IDMSOPTI module for batch programs that require CA-IDMS
database services. For more information, see the 3.1, “Overview” on page 3-3. To
define an IDMSOPTI module:

1. Code an IDMSOPTI macro

2. Assemble the IDMSOPTI module

3-26 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

Note: To make IDMSOPTI specifications available to a batch program, you must link
edit the IDMSOPTI module with the program.

 IDMSOPTI syntax

��── IDMSOPTI ──�

 �──┬───────────────────────────┬───�

└─ ,CVNUM= ─┬─ cv-number ─┬─┘

└─ � ← ───────┘

 �──┬─────────────────────────┬───�

└─ ,CENTRAL= ─┬─ NO ────┬─┘

├─ ONLY ──┤

└─ YES ← ─┘

 �──┬───────────────────────────┬───�

└─ ,SYSCTL=sysctl-linkname ─┘

 �──┬───┬─────────────────────────────�

└─ ,NODENAM=(nodename ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 �──┬───┬─────────────────────────�

└─ ,DBNAME=(database-name ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 �──┬───────────────────────┬───��

└─ ,STXIT= ─┬─ YES ← ─┬─┘

└─ NO ────┘

 IDMSOPTI parameters

CVNUM
Identifies the DC/UCF system to the CA-IDMS SVC.

Considerations: Cv-number must be the number (0 through 255) specified by the
CVNUMBER parameter of the system generation SYSTEM statement.
Information on the SYSTEM statement is given in CA-IDMS System Tasks and
Operator Commands.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-27

3.4 Batch and non-DC/UCF programs

CENTRAL
Specifies whether the program will use CA-IDMS central version services.

NO
The program will never use CA-IDMS central version services.

ONLY
The program will always require CA-IDMS central version services.

YES
The program can use either central version or local mode services:

■ The program will use central version services when the execution JCL for
the batch application specifies an existing SYSCTL file.

■ The program will use local mode services when the execution JCL does
not specify a SYSCTL file.

If you code CENTRAL=YES, be sure to include the SYSCTL parameter
(below) in the IDMSOPTI module. At run time, the SYSCTL linkname
specified in JCL for the application must match the linkname specified in the
IDMSOPTI module.

SYSCTL
Specifies the linkname of a SYSCTL file.

Considerations: SYSCTL should be coded when either of the following
conditions apply:

■ The program can use either central version or local mode database services
(that is, CENTRAL=YES).

■ Users can execute the program on different DC/UCF systems. You can
optionally specify a default DC/UCF system in the IDMSOPTI CVNUM
parameter. At run time, a user can override the default system, using the
system specified in the SYSCTL file.

�� For more information on SYSCTL files, see 3.4.4.2, “Defining a SYSCTL
File” on page 3-31.

NODENAM
Specifies a 1- to 8-character name of a system defined to your DC/UCF
communications network.

ALWAYS
The program will pass database requests to the named system unless the
named system is overridden by the SYSCTL file.

DEFAULT
The program will pass database requests to the named system only if both of
the following are true:

■ The program does not name a remote system.

■ The SYSCTL file either does not name a remote system or specifies
DEFAULT along with the database that it names.

3-28 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

DBNAME
Specifies a database name.

This specification may be overridden. For override conditions, see the table in
3.4, “Batch and non-DC/UCF programs” on page 3-8.

ALWAYS
The program will use the named database unless the named database is
overridden by the SYSCTL file.

DEFAULT
The program will use the named database only if both of the following are
true:

■ The program does not name a database.

■ The SYSCTL file either does not name a database or specifies
DEFAULT along with the database that it names.

STXIT
Specifies whether the IDMSBSVC module is to issue an STXIT SVC to trap
abnormal program termination conditions that can occur during central version
execution of a batch program. In this case, a ROLLBACK will be initiated
automatically.

YES
The STXIT SVC will be issued for batch programs running under central
version. Interrupts of the following types will be trapped:

 ■ Program check

 ■ Program time-out

■ Unrecoverable program error

 ■ Program abend

NO
The STXIT SVC will not be issued. Specify NO for CULPRIT and PL/I
batch programs that use an IDMSOPTI module under BS2000/OSD.

IDMSOPTI usage: The way you code an IDMSOPTI module determines how
programs that use the module will access and use CA-IDMS database services, as
outline below:

Chapter 3. Setting Up Interpartition Communication and the SVC 3-29

3.4 Batch and non-DC/UCF programs

Assembling an IDMSOPTI module: You can define several different IDMSOPTI
modules for a given system. Each IDMSOPTI module must be given a unique name.
To assemble an IDMSOPTI module, use JCL commands based on the sample
commands shown below.

 BS2000/OSD IDMSOPTI

Program execution Considerations IDMSOPTI syntax

Always uses central
version database
services provided by
the same DC/UCF
system

Assemble an
IDMSOPTI module
for programs that use
the DC/UCF system.

IDMSOPTI

 ,CVNUM=cv-number

 ,CENTRAL=ONLY

Uses central version
database services
provided by various
DC/UCF systems

Optionally assemble
an IDMSOPTI
module. �1�

IDMSOPTI SYSCTL=

 sysctl-linkname

 ,CENTRAL=ONLY

Uses central version
services provided by a
default DC/UCF system
that can be overridden
by a SYSCTL file

Assemble an
IDMSOPTI module.

IDMSOPTI SYSCTL=

 sysctl-linkname

 ,CVNUM=cv-number

 ,CENTRAL=ONLY

Always uses local
mode database services

Optionally assemble
an IDMSOPTI
module.

IDMSOPTI

 CENTRAL=NO

Sometimes uses central
version and sometimes
local mode services

Optionally assemble
an IDMSOPTI
module. �1�

IDMSOPTI SYSCTL=

 sysctl-linkname

Note:
�1� - The SYSCTL data set will provide the necessary communication information at
program execution time.

/CALL-PROC (LIB=idms.dba.srclib,ELEM=IDMSMOD), -

/ PROC-PAR=(IDMSOPTI,DBALOD=idms.objlib.user)

idms.dba.srclib filename of the CA-IDMS DBA source library

idms.objlib.user filename of the object library in which the IDMSOPTI
object will be saved.

3-30 CA-IDMS System Operations

3.4 Batch and non-DC/UCF programs

3.4.4.2 Defining a SYSCTL File

You can define one or more SYSCTL files to provide alternative information for
programs that require CA-IDMS database services while executing under another TSN.
SYSCTL specifications override those given by batch and TP-monitor interface
modules and IDMSOPTI modules.

You define the linkname for a SYSCTL file and determine the specifications to be
contained in the SYSCTL file by using the DC/UCF system generation SYSTEM
statement. At system startup time, DC/UCF copies the specifications made in the
SYSTEM statement to the SYSCTL file.

�� For more information on the SYSTEM statement, see CA-IDMS System Tasks and
Operator Commands.

Access a SYSCTL file: To use a SYSCTL file in conjunction with programs
executed in other regions, the user must either:

■ Specify a linkname or SYSCTL in the batch application's execution JCL. The
SYSCTL linkname should point to a file with the same filename used by the
DC/UCF system for its SYSCTL data set.

■ If the program is linked with IDMSOPTI, the linkname used for the SYSCTL file
in the batch application's execution JCL must match the linkname specified for the
SYSCTL in the IDMSOPTI module. The filename pointed to by this linkname
must match the filename used by the DC/UCF systems for its SYSCTL data set.

At sites where more than one DC/UCF system runs concurrently, each SYSCTL file
must have a unique filename. However, all systems can use the same linkname for the
SYSCTL file.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-31

3.5 Generating the SVC

3.5 Generating the SVC

An SVC is used to facilitate interpartition communication for:

■ IDMS batch programs

■ Non-DC/UCF online programs

 ■ UCF programs

■ DC/UCF to DC/UCF programs within the same CPU

Certain online functions also use the SVC. These functions include storage protection
and detection of runaway programs, for example, user-mode programs in an endless
loop.

In OS/390 and VSE/ESA systems, an actual SVC is used. In VM/ESA and
BS2000/OSD systems, equivalent modules perform CA-IDMS SVC communication
services. The remainder of this overview uses the term SVC to refer to both types of
definitions.

Information for generating an SVC appears below for each operating system.

3.5.1 OS/390 and MSP/EX

In OS/390 and MSP/EX operating systems, the CA-IDMS SVC provides a means of
communication between DC/UCF and programs executing in another region within the
same CPU. For more information on SVCs, see the 3.1, “Overview” on page 3-3.

During installation, you generate a CA-IDMS SVC module using defaults for all
parameters. This section explains the steps to take if you want to generate a new
CA-IDMS SVC module and make it available for use:

1. Code a #SVCOPT macro appropriate to your operating system

2. Assemble and link edit the #SVCOPT macro with the SVC module provided at
installation

3. Install the SVC using CAIRIM

Considerations: You define both the SVC number and a SYSCTL file for the
DC/UCF system in the system generation SYSTEM statement. When you start up
DC/UCF in an OS/390 or MSP/EX system:

■ DC/UCF signs on to a CA-IDMS SVC if an SVC number is specified at system
generation time.

■ DC/UCF places the SVC number in the specified SYSCTL file.

�� For more information about specifying the SVC number and SYSCTL file for a
DC/UCF system, see CA-IDMS System Tasks and Operator Commands.

3-32 CA-IDMS System Operations

3.5 Generating the SVC

 #SVCOPT syntax

��─ #SVCOPT SVCNO=svc-number ───�

 �─┬──┬─────────────────────────────────�

└─ ,SVCXLEN= ─┬─ ere-extension-length ─┬─┘

└─ � ← ──────────────────┘

 �─┬──┬─��

└─ ,ENVIRON= ─┬─ MVS ← ─┬────────────────────┬─────────────────────────┬─┘

│ └─ mvs-only-options ─┘ │

├─ MSP ──┤

├─ (MVS, VMCF) ─┬────────────────────┬┬────────────────┬─┤

│ └─ mvs-vmcf-options ─┘└─ vmcf-options ─┘ │

├─ (DOS, VMCF) ─┬────────────────┬───────────────────────┤

│ └─ vmcf-options ─┘ │

└─ (CMS, VMCF) ─┬────────────────┬───────────────────────┘

└─ vmcf-options ─┘

Expansion of vmcf-options:

��─┬──────────────────────────────┬───�

└─ ,VMBUFCT=vmcf-buffer-count ─┘

 �─┬────────────────────────┬───�

└─ ,DBUGCMS= ─┬─ NO ← ─┬─┘

└─ YES ──┘

 �─┬────────────────────────┬───��

└─ ,PSWMODE= ─┬─ EC ← ─┬─┘

└─ BC ───┘

Expansion of mvs-only-options:

��─┬─────────────────────────────────┬──�

└─ ,CVKEY=dc-primary-protect-key ─┘

 �─┬─────────────────────┬──��

└─ ,SMF= ─┬─ NO ────┬─┘

└─ YES ← ─┘

Chapter 3. Setting Up Interpartition Communication and the SVC 3-33

3.5 Generating the SVC

Expansion of mvs-vmcf-options:

��─┬────────────────────┬───�

└─ ,LAP= ─┬─ NO ← ─┬─┘

└─ YES ──┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,VMCFCPU= ─┬─ vm-mvs-cpu-number ─┬─┘

└─ NO ← ──────────────┘

 �─┬───┬────────────────────────�

└─ ,VMCFLOC= ─┬─ available-low-storage-address ─┬─┘

└─ � ← ───────────────────────────┘

 �─┬──────────────────────┬───�

└─ ,VMCFSCH= MASTER ← ─┘

 �─┬─────────────────────────┬──��

└─ ,MAXTCB=max-tcb-count ─┘

 #SVCOPT parameters

SVCNO
Gives the number of the CA-IDMS SVC being generated. Svc-number must be an
integer in the range 0 through 255.

Considerations:

■ Be sure to assign an SVC number that is higher than any SVC interrupt
numbers used by your operating system. Consult your operating system
documentation for SVC values that your operating system reserves.

■ SVC numbers 172, 173, 174, 175, and 176 are reserved SVC number for
CA-IDMS for use by CAIRIM. Values 200 through 255 are standard user
SVC numbers.

SVCXLEN
Specifies the number of bytes in the ERE extension to be used by the
IDMSSVCX user exit.

�� For information on the IDMSSVCX exit, see Chapter 7, “User Exits”

Ere-extension-length may be a positive integer in the range 1 through 32767.

ENVIRON
Specifies the environment in which you are operating.

MVS
Specifies the OS/390 operating system.

(MVS,VMCF)
Specifies the OS/390 operating system and activates VMCF support. The
Virtual Machine Command Facility (VMCF) is only supported when the
CA-IDMS/CMS Option is installed and when OS/390 is running as a guest
machine under VM/ESA. Batch jobs running under CMS can communicate
with CVs running under OS/390 using VMCF. Only one IDMS SVC in an
OS/390 image may use VMCF at a time.

3-34 CA-IDMS System Operations

3.5 Generating the SVC

Note: Do not code this parameter merely because DC/UCF is running on a
guest machine. This parameter applies only if VMCF is being used to
communicate with another virtual machine (for example, UCFCMS).

MSP
Specifies Fujitsu's MSP/EX operating system.

(CMS,VMCF)
Specifies the VM/ESA operating system and activates VMCF support. This
Virtual Machine Command Facility (VMCF) option is required when running
under VM/ESA.

(DOS,VMCF)
Specifies the VSE/ESA operating system and activates VMCF support. The
Virtual Machine Command Facility (VMCF) is only supported when the
CA-IDMS/CMS Option is installed and when VSE/ESA is running as a guest
machine under VM/ESA. Batch jobs running under CMS can communicate
with CVs running under VSE/ESA using VMCF. Only one IDMS SVC in an
VSE/ESA image may use VMCF at a time.

CVKEY (MVS)
Optionally identifies the primary protect key for DC/UCF. This protect key must
also be specified for DC/UCF system routines defined in the OS/390 program
properties table (PPT) for the system.

If a CVKEY value is specified and a routine invokes a function reserved for use
only by DC/UCF, the CA-IDMS SVC verifies that the invoking routine's job or
address space has the primary protect key. If the routine does not have the
primary protect key, the SVC does not allow the routine to use the SVC function.

SMF
Specifies whether system monitor facility (SMF) records are required.

LAP
Specifies whether code should be generated for this CA-IDMS SVC to allow the
system to turn LAP (low address protection) on and off as needed. If YES is
specified, the necessary code will be generated.

Low address protection controls the use of low core storage. The SVC needs to
be able to use low core storage when the VMCF option has been enabled.
Therefore, if you specify (MVS,VMCF) on the ENVIRON parameter, you should
also specify LAP=YES.

VMCFCPU
Establishes CPU affinity for the CA-IDMS SVC when issuing VMCF commands.
CPU affinity is required when OS/390 is running concurrently on multiple
processors and is running under VM/ESA when VMCF is running only on one of
the processors. VMCFCPU specifies the number of the processor on which
affinity is desired. Valid values are 0-15 and NO. If OS/390 runs under VM/ESA
2.2 and above, CPU affinity should not be required.

Note that DC/UCF recognizes this parameter only if you code (MVS,VMCF) on
the ENVIRON parameter, described above.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-35

3.5 Generating the SVC

VMCFLOC
Identifies the available low storage address for saving the LPSW (program status
word). The address must be double word aligned. Available-low-storage-address
is a hex value. DC/UCF recognizes this parameter only if you code
(MVS,VMCF) on the ENVIRON parameter.

Note: The length of the saved LPSW is 8 bytes when running 31 bit mode. The
length of the saved LPSW is 16 bytes when running 64 bit mode. The
default value of 0 is automatically translated at runtime to X'230' when
running in 31 bit mode and to X'4D0' when running in 64 bit mode. If
X'230' is specified, it is automatically translated at runtime to X'4D0' when
running in 64 bit mode. Due to routine changes at each release of any
operating system, you should consult with your systems programmer to
determine an available address for your release of the operating system.

VMCFSCH
Indicates that the VMCF service request block (SRB) is scheduled to the
MASTER schedule address space control block (ASCB). MASTER is the only
valid value. Note, DC/UCF recognizes this parameter only if you code
(MVS,VMCF) on the ENVIRON parameter, described above.

MAXTCB=max-tcb-count
max-tcb-count specifies the number of save areas that will be allocated to support
CPU affinity code under OS/390. If DC multitasking support is enabled this value
should be the same as the maximum number of TCBs that can run in all DCs
using this SVC at the same time.

If multitasking support is not enabled in the CV, then this should be set to 1, the
default. Specifying too large a number wastes some CSA storage. Currently about
88 bytes per save area is allocated.

Note, DC/UCF recognizes this parameter only if you code (MVS,VMCF) on the
ENVIRON parameter, described above.

VMBUFCT=vmcf-buffer-count
vmcf-buffer-count parameter specifies the number of buffers allocated for VMCF
communication. Each buffer is 4096 bytes long, page-fixed, and page aligned. The
default number is 10.

On the CV side these buffers are shared by all CVs using this SVC. The number
of buffers allocated should be enough to support the number of concurrent
inbound and outbound requests that could be active at one time taking into
account that requests larger than 4K are split and will use one buffer for each
chunk.

On the VM/ESA front-end the number of buffers should be twice the number
needed to handle one ERE data packet plus overhead. It is possible for a CV to
receive a packet, process it, and return it, before the front-end has a chance to free
its buffer.

These buffers are used to send and receive ERE packets between the front-end
VM/ESA machines and the back-end CV machine. If a data packet is too large to
fit into one buffer, it will be split into two or more chunks. Each chunk will be
sent separately and reassembled on the target machine.

3-36 CA-IDMS System Operations

3.5 Generating the SVC

For VMCF communications there are 40 bytes of overhead in each 4K buffer, so
the largest chunk of data that may be sent is 4056 bytes. If the application that is
using this communication also splits data packets a size should be chosen so that
either the CMS option does no splitting (i.e. keep the packet sizes to 4056 or less.)
or the CMS option does all the splitting (i.e. specify a packet size to be as large as
needed.) The latter option may be more efficient since the splitting takes place at
a lower level in the code path.

In OS/390 and VSE/ESA, these buffers are allocated when the first CV using the
VMCF SVC is started and will remain until the last CV is shutdown. Only one
set of buffers is allocated for the entire system.

In the VM/ESA front-end they are allocated on the first SVC call and are not
released until VM/ESA clears storage during program termination.

Each VM/ESA CV will allocate these buffers at startup.

Note, DC/UCF recognizes this parameter only if you code (,VMCF) on the
ENVIRON parameter, described above.

DBUGCMS=YES/NO
This parameter specifies whether to allocate a 4096 byte storage area and trace
VMCF external interrupts.

Although the default is NO, YES is recommended as the overhead is slight, and
the trace buffer provides an invaluable tool for investigating problems.

Note, DC/UCF recognizes this parameter only if you code (...,VMCF) on the
ENVIRON parameter, described above.

PSWMODE=EC/BC
Specifies whether the operating system running under VM/ESA is doing its own
paging or not. "EC" says it is and virtual addresses must be converted to "real"
before passing them to VMCF. "BC" says it is not and addresses passed to
VMCF do not need to be converted.

Under OS/390 "EC" will probably be specified.

Under VM/ESA "BC" should be specified.

VSE/ESA running VM/ESA mode should use "BC".

VSE/ESA running ESA or 370 mode should use "EC".

Note: DC/UCF recognizes this parameter only if you code (...,VMCF) on the
ENVIRON parameter, described above.

Assembling and link editing the #SVCOPT macro: To assemble and link edit
the #SVCOPT macro, use JCL statements based on the sample statements shown
below.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-37

3.5 Generating the SVC

 OS/390 #SVCOPT

// EXEC ASMA9�

//ASM.SYSLIB DD DSN=sys1.maclib,DISP=SHR

// DD DSN=idms.maclib,DISP=SHR

//ASM.SYSIN DD �

 #SVCOPT macro

 END

//LKED.SYSLMOD DD DSN=sys1.svclib,DISP=SHR

//LKED.OBJ DD DSN=idms.objlib,DISP=SHR

//LKED.SYSIN DD �

 INCLUDE OBJ(IDMSMSVC)

INCLUDE OBJ(IDMSMSVM) ��only if ENVIRON=(MVS,VMCF)

INCLUDE OBJ(IDMSCMSO) ��only if ENVIRON=(MVS,VMCF)

 ENTRY (IGCnnn)

 NAME IGCnnn(R)

Installing the CA-IDMS SVC: You install the CA-IDMS SVC module using
CAIRIM. For complete information, refer to the CA-IDMS installation manual for
your operating system.

idms.objlib name of the CA-IDMS object library

idms.srclib data set name of the CA-IDMS macro library

nnn CA-IDMS SVC number

sys1.maclib data set name of the system macro library

sys1.svclib data set name of the system library where user SVC
load modules are to be stored

 3.5.2 VSE/ESA

You define a CA-IDMS SVC to provide a means of communication between programs
executing in another partition and DC/UCF. A CA-IDMS SVC must be present if
central version database operations are required on a VSE/ESA system. DC/UCF
signs on to the CA-IDMS SVC at system startup. For more information on SVCs, see
3.1, “Overview” on page 3-3.

If the CMS option is installed, you must code the #SVCOPT macro and link the
resulting object file to create an IDMSDSVM phase. #SVCOPT is described in 3.5.1,
“OS/390 and MSP/EX” on page 3-32. The link for IDMSDSVM is described later in
this section.

To generate an SVC, you use the #DEFSVC macro call which creates the IDMSVCTB
phase. The IDMSVCTB can define up to three SVCs for different tape release or gen
levels. You initialize the SVCs at VSE/ESA IPL by executing the Computer
Associates System Adapter utility program CASAUTIL. When a DC/UCF system
starts up, a phase named IDMSDSVC is loaded, which acts as an extension of the
SVC. You can link an SVC user exit routine (IDMSSVCX) with IDMSDSVC.
Information about re-linking IDMSDSVC appears later in this chapter.

3-38 CA-IDMS System Operations

3.5 Generating the SVC

You generate an IDMSVCTB phase using #DEFSVC macro calls. There are two
types of #DEFSVC calls:

■ TYPE=ENTRY (the default) defines the SVC number and other attributes of the
SVC. You can include up to three #DEFSVC macro calls of this type; each call
defines one CA-IDMS SVC.

■ TYPE=GEN creates the SVC table and the punched JCL needed for the
IDMSVCTB assembly and link edit. One #DEFSVC macro call of this type must
appear last in the IDMSVCTB assembly.

This section explains:

■ Coding the #DEFSVC macro

 ■ Generating IDMSVCTB

 ■ Linking IDMSDSVC

Considerations: You define both the SVC number and a SYSCTL file for the
DC/UCF system in the system generation SYSTEM statement. When you start up
DC/UCF in a VSE/ESA system:

■ DC/UCF signs on to a CA-IDMS SVC if an SVC number is specified at system
generation time.

■ DC/UCF places the SVC number in the specified SYSCTL file.

�� For more information about specifying the SVC number and SYSCTL file for a
DC/UCF system, see CA-IDMS System Tasks and Operator Commands.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-39

3.5 Generating the SVC

 #DEFSVC syntax

��─ #DEFSVC SVC=svc-number ───�

 �─── ,MAXCV= ─┬─ maximum-cv-count ──┬──�

└─ 5 ← ───────────────┘

 �─┬──────────────────────┬──�

└─ ,OBJLIB=lib.sublib ─┘

 �─── ,SVCREL= ─┬─ svc-release-number ← ─┬────────────────────────────────────�

└─ nnn ──────────────────┘

 �─── ,SVCXLEN= ─┬─ svc-extension-length ─┬───────────────────────────────────�

└─ � ← ──────────────────┘

 �─── ,TYPE= ─┬─ ENTRY ← ─┬───�

└─ GEN ─────┘

 �─── ,MAXPART= ─┬─ maximum-cv-partition-count ─┬─────────────────────────────�

└─ 3 ← ────────────────────────┘

 �─── ,LST= ─┬─ 'power-lst-options'──────────┬────────────────────────────────�

└─ '� $$ LST CLASS=A,DISP=D' ← ─┘

 �─┬──────────────────────┬───�

└─ ,SRCLIB=lib.sublib ─┘

 �─┬───────────────────────┬──��

└─ ,LOADLIB=lib.sublib ─┘

 #DEFSVC parameters

SVC
Identifies the number of the CA-IDMS SVC being generated. Svc-number is an
integer in the range 0 through 255.

MAXCV
Specifies the maximum number of DC/UCF regions that can signon to this SVC.
Maximum-cv-count is an integer in the range 1 through 256. The default is 5.

OBJLIB
Identifies the sublibrary in which to include the SVC object module. The default
is the sublibrary within the library containing CA-IDMS modules.

Typically you use this parameter to install SVCs from different tape gen levels.

SVCREL
Identifies the release number for this SVC. It is a three-digit value with an implied
decimal point after the second digit.

Svc-release-number
The current release number, this is the default.

nnn
The numeric value for the SVCREL number; nnn means release nn.n.

For example, if the release number is 15.0, SVCREL=150.

3-40 CA-IDMS System Operations

3.5 Generating the SVC

SVCXLEN
Specifies the length, in bytes, of additional user area to be added to the ERE
extension area; you must code this parameter if you use the IDMSSVCX user exit.
Svc-extension-length is an integer in the range 0 to 32767. The default is 0.

�� For more information about the IDMSSVCX user exit, see Chapter 7, “User
Exits”

TYPE
Specifies the type of the #DEFSVC macro call.

ENTRY
Indicates the #DEFSVC macro call defines an SVC.

GEN
Creates the SVC table and the punched JCL for the IDMSVCTB phase
assembly and link-edit. A call of this type must be the last call in the
IDMSVCTB assembly.

MAXPART
Specifies the maximum number of partitions allowed to run DC/UCF regions for
any SVC in the VSE/ESA system. Maximum-cv-partition-count is an integer in
the range 1 to 256. The default is 3. You may specify this parameter only if you
also specify TYPE=GEN.

LST
Controls the destination of punched JCL for the IDMSVCTB assembly and link
edit. Power-lst-options are valid POWER LST options separated by a comma;
enclose the entire option string in single quotes. The default is:

'�$$ LST CLASS=A,DISP=D'

You may specify this parameter only if you also specify TYPE=GEN.

�� For more information about POWER LST options, refer to documents provided
for your VSE/ESA operating system.

SRCLIB
Specifies the source library for CA-IDMS macros in the form lib.sublib. You can
omit this option if the CA-IDMS libraries are part of the permanent LIBDEF
definitions for the partition used to generate IDMSVCTB. You may specify this
parameter only if you also specify TYPE=GEN.

LOADLIB
Identifies the target library for the generated phases if the form lib.sublib. You
can omit this option if the CA-IDMS libraries are part of the permanent LIBDEF
definitions for the partition used to generate IDMSVCTB. You may specify this
parameter only if you also specify TYPE=GEN.

#DEFSVC macro statement examples: The example below shows three
#DEFSVC macro calls used to create the IDMSVCTB phase. The first two calls
define SVCs 250 and 232; the last call creates the SVC table and controls the
destination of punched JCL for the IDMSVCTB assembly. Note that you can omit all
library options if the CA-IDMS libraries are part of the permanent LIBDEF definitions
for the partition used to generate IDMSVCTB:

Chapter 3. Setting Up Interpartition Communication and the SVC 3-41

3.5 Generating the SVC

 #DEFSVC SVC=25�,MAXCV=4,SVCXLEN=4�,OBJLIB=IDMS15�.OBJ

�

 #DEFSVC SVC=232,MAXCV=2,OBJLIB=IDMS15�.OBJ

�

 #DEFSVC TYPE=GEN,MAXPART=5,SRCLIB=IDMS15�.SRC,

LST='� $$ LST CLASS=I,DEST=(,VRSCS)',

 LOADLIB=IDMS15�.LOAD

Assembling and link editing IDMSVCTB

VSE/ESA IDMSVCTB assembly and link edit

� $$ JOB JNM=IDMSVCTB,CLASS=A,DISP=D

� $$ LST CLASS=A

� $$ PUN CLASS=A,DISP=I

// JOB IDMSVCTB STAGE_1

� ASSEMBLE IDMSVCTB STAGE_1

// OPTION DECK

// EXEC ASMA9�,SIZE=128K

SVTB TITLE 'CA-IDMS SVC TABLE'

#DEFSVC macro statement (required)

#DEFSVC macro statement (optional)

#DEFSVC macro statement (optional)

 #DEFSVC TYPE=GEN (required)

 END

/�

/&

� $$ EOJ

Linking IDMSDSVC: IDMSDSVC is a phase loaded during DC/UCF start up. It
acts as an extension of the CA-IDMS SVC. A version of the IDMSDSVC macro is
precompiled and installed into the CA-IDMS sublibrary in OBJ and PHASE formats.
The only reason to re-link IDMSDSVC is when you generate the IDMSSVCX user
exit.

�� For more information about the IDMSSVCX user exit, see Chapter 7, “User Exits”

VSE/ESA IDMSDSVC link edit

// JOB LINK IDMSDSVC

// DLBL idmslib.'idms.library',2�99/365

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=idmslib.sublib

// LIBDEF PHASE,CATALOG=idmslib.sublib

// OPTION CATAL

 PHASE IDMSDSVC,�,NOAUTO

 INCLUDE IDMSDSVC

 INCLUDE IDMSSVCX

 ENTRY IDMSDSVC

/�

// EXED LNKEDT

/�

/&

3-42 CA-IDMS System Operations

3.5 Generating the SVC

Linking IDMSDSVM: IDMSDSVM is a phase that is used when the CMS option is
installed. It is loaded by system adapter when IDMS is initialized. This is usually
done when VSE/ESA is IPL'ed. It may also be reloaded using the System Adapter
utility CASAUTIL RELOAD function, provided all CVs using the CMS option are
shutdown. IDMSDSVM is relinked when a #SVCOPT macro is compiled specifying
runtime options. It must be loaded into page-fixed, shared storage.

VSE/ESA IDMSDSVM link edit

// JOB LINK IDMSDSVM

// DLBL idmslib.'idms.library',2�99/365

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=idmslib.sublib

// LIBDEF PHASE,CATALOG=idmslib.sublib

// OPTION CATAL

 PHASE IDMSDSVM,�,NOAUTO,SVAPFIX

 MODE AMODE(31),RMODE(ANY)

 INCLUDE dsvcopt

 INCLUDE IDMSDSVM

 INCLUDE IDMSCMSO

 ENTRY DSVMEP�

/�

// EXED LNKEDT

/�

/&

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file-ID associated with the file containing CA-IDMS
modules

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file-ID associated with the file containing CA-IDMS
modules

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

dsvcopt name of object file generated by #SVCOPT assembly

Chapter 3. Setting Up Interpartition Communication and the SVC 3-43

3.5 Generating the SVC

 3.5.3 VM/ESA

Communication between DC/UCF and programs running in in another VM/ESA
machine requires that an #SVCOPT be created for both the DC/UCF back-end
machine and the VM/ESA front-end machine.

For DC/UCF the #SVCOPT is linked as part of the IDMSVMCF module. A
different version of #SVCOPT is generated for DC/UCF than for a batch job as
the requirements for each are different from the other.

Similarly, to enable a program executing in a VM/ESA virtual machine to access
DC/UCF system executing under an OS/390 or VSE/ESA guest operating system,
an #SVCOPT macro also needs to be generated that specifies VMCF as part of
the ENVIRON=parameter.

Under OS/390 the generated #SVCOPT module is linked with the CA-IDMS
SVC.

In VSE/ESA the equivalent #SVCOPT module is linked as part of module
IDMSDSVM and is loaded as part of CA-System-Adapter initialization.

�� For more information about CA-IDMS central version operations for programs in a
VM/ESA virtual machine, see Appendix C, “VM/ESA Considerations” on page C-1.

Under VM/ESA, CA-IDMS SVC functions are performed by both the IDMSVMCF
and IDMSUSVC modules:

■ IDMSVMCF intercepts program calls for CA-IDMS database services and routes
the calls to the VMCF.

■ IDMSUSVC provides the VMCF with an entry point into DC/UCF and routes to
the VMCF the calls that are issued by DC/UCF to batch application programs.

The IDMSUSVC and IDMSVMCF modules are provided as an object deck at
installation time.

�� For information about these modules, refer to CA-IDMS Installation and
Maintenance Guide - VM/ESA.

For more information about CA-IDMS SVC operations, see the 3.1, “Overview” on
page 3-3.

Considerations: You define both the SVC number and a SYSCTL file for the
DC/UCF system in the system generation SYSTEM statement. When you start up
DC/UCF in a VM/ESA system:

■ DC/UCF signs on to a CA-IDMS SVC if an SVC number is specified at system
generation time.

■ DC/UCF places the SVC number in the specified SYSCTL file.

�� For more information about specifying the SVC number and SYSCTL file for a
DC/UCF system, see CA-IDMS System Tasks and Operator Commands.

3-44 CA-IDMS System Operations

3.5 Generating the SVC

IDMSSVCX support: VM/ESA users can install user exit IDMSSVCX at their site.
This exit captures user and system information whenever an external request unit
attempts to sign on to DC/UCF under VM/ESA. For details about the IDMSSVCX
exit, see Chapter 7, “User Exits” To install this exit in your system, modify the
IDMSSVCX macro for the system so that:

■ VM specifies YES, indicating that the macro will run under VM/ESA.

■ SVCXLEN specifies the length of the ERE SVC extension to be used by
IDMSSVCX. Specify the length in bytes. The valid range is 1 through 32767,
and the default is 0.

Note: When the contents of the ERE SVC extension are written to the task
statistics record in the DC/UCF log, only the first 40 bytes of the ERE
SVC extension are written.

 3.5.4 BS2000/OSD

Under BS2000, communication between programs executing outside the DC/UCF
TSN(s) is performed by the IDMSBSVC module. It performs the same operations as a
CA-IDMS SVC for OS/390. For more information about CA-IDMS SVC operations,
see the 3.1, “Overview” on page 3-3.

During installation, the IDMSBSVC module is created in the DBA load library. There
is no need to customize the module as on other operating systems.

Chapter 3. Setting Up Interpartition Communication and the SVC 3-45

3-46 CA-IDMS System Operations

Chapter 4. Distributed Applications Using UCF or
APPC

4.1 UCF programs . 4-3
4.1.1 Terminating task data transfer . 4-3

4.1.1.1 How UCF transfers control and data 4-4
4.1.1.2 DC back-end . 4-6
4.1.1.3 DC front-end . 4-8
4.1.1.4 CICS front-end . 4-8
4.1.1.5 IMS-DC front-end . 4-11
4.1.1.6 UTM front-end . 4-12

4.1.2 Non-terminating task data transfer . 4-15
4.1.2.1 Flow of control . 4-17
4.1.2.2 CICS front-end . 4-24
4.1.2.3 Batch and IMS-DC front-ends 4-28
4.1.2.4 Accessing a UDAS front-end from a COBOL program 4-35

4.2 Advanced-program-to-program communications 4-40
4.2.1 Real APPC . 4-41
4.2.2 Emulated APPC . 4-43

Chapter 4. Distributed Applications Using UCF or APPC 4-1

4-2 CA-IDMS System Operations

4.1 UCF programs

 4.1 UCF programs

When the program is executed by a terminal attached to a TP monitor supported by
UCF, the CA-IDMS SVC passes input/output (I/O) requests and other information
between the DC/UCF region/partition and the region/partition in which the TP monitor
executes.

UCF front- and back-ends: To enable the TP monitor to communicate with the
SVC, the site must install a UCF front-end in the TP-monitor region/partition. The
UCF back-end must be installed in the DC/UCF region/partition.

�� The UCF run-time environment is described in Chapter 1, “Introduction.”

For information on how to generate a UCF system, see Chapter 5, “UCF Operations.”

Under UCF, an application can be distributed between the front-end system and the
back-end system in an environment that consists of one of the following:

■ Two DC systems

■ A DC back-end and a front-end on a system using one of the TP-monitors
supported by DC.

The distribution of applications is possible only for tasks that are associated with
terminals. The task must be initiated from the front-end system that owns the
terminal. During the execution of distributed applications, control of the terminal is
transferred from one program to another. All involved programs can issue terminal
I/O requests. The following pages describe:

■ Terminating task data transfer from storage to a terminal

■ Non-terminating task data transfer from storage to a terminal

4.1.1 Terminating task data transfer

Terminating task data transfer from program storage to a terminal or device uses UCF
to pass data and control serially between a UCF front-end and back-end. The
front-end initiates a task on the back end system and waits until the task is complete to
return the requested information. The information usually includes a request to begin
a new task on the front-end. This process can be repeated as many times as necessary
to accomplish the needs of the application. Using industry-wide terminology, the UCF
back-end is an example of a user-written connection-less server.

The illustration below shows a sample distributed application. In this example,
Program A running on a UCF front-end (for example, CICS) passes a part number to
program B and terminates. Program B retrieves the requested information and passes
it back to a new task, Program C:

Chapter 4. Distributed Applications Using UCF or APPC 4-3

4.1 UCF programs

The next sections explain:

■ How data and control transfer between programs on the front-end and programs
on the back-end.

■ How the DC back-end transfers control and data to the front-end.

■ How the front-end system transfers control and data to the DC back-end. The
following front-end systems are presented:

 – DC

 – CICS

– BATCH, and other TP-monitors, such as IMS-DC

 – UTM

4.1.1.1 How UCF transfers control and data

Applications distributed between UCF front- and back-ends use UCF facilities to pass
data and control. General information about transferring data and control is presented
below.

For details about passing data and control in a distributed application, see the
information presented later in 4.1.1.2, “DC back-end” on page 4-6 and in the specific
description of your back-end system.

Passing data: When you pass data between systems in a UCF distributed application,
the data must be passed as a single contiguous piece of data.

4-4 CA-IDMS System Operations

4.1 UCF programs

Front-end to back-end transfers: When a program transfers control from the
front-end to the back-end:

1. The transferring program specifies the next task or transaction to be executed on
the front-end. This task or transaction must be defined to invoke the appropriate
UCF front-end program.

2. The UCF front-end program:

■ Establishes the UCF connection to the back-end.

■ Passes data to the back-end if any was prepared by the transferring program.

■ Initiates on the back-end system a task that has the same name as the related
front-end task or transaction. The back-end task must be defined to invoke
the program to which control is being transferred.

The figure below shows what happens when control transfers from the front-end to the
back-end of a distributed application. In this example, front-end program A transfers
data and control to back-end program B. To do this, program A executes TSKB,
which in turn invokes the UCF front-end program. The UCF front-end program passes
data and transfers control to the back-end:

 ┌───┐

 │ ┌──────────┐ │

│ Operating │ Data and │ ┌────┐ │

 │ System │ Control ├──→ SVC├─────┐ │

 │ Supervisor └───↑──────┘ └────┘ │ │

 ├────────────────────────┼───────┬────────────┼───────────┤

 │ ┌──────────┐ │ │ ┌────↓─────┐ │

 │ │ Program A│ │ │ │ TSKB │ │

 │ └────┬─────┘ │ │ │ │ │

│ │ │ │ └────┬─────┘ │

 │ │ │ │ │ │

 │ │ │ │ │ │

 │ │ │ │ │ │

 │ ┌────↓─────┐ ┌────┴────┐ │ ┌────↓─────┐ │

 │ │ TSKB ├────→ UCF │ │ │Program B │ │

 │ │ │ │Front-End│ │ │ │ │

 │ └──────────┘ │ Program │ │ └──────────┘ │

 │ └─────────┘ │ │

 └────────────────────────────────┴────────────────────────┘

UCF Front-End System DC Back-End System

Back-end to front-end transfers: When a program transfers control from the
back-end to the front end:

1. The transferring program specifies the next task or transaction to be executed on
the back-end. This task or transaction must be defined to invoke program
RHDCUXFT.

2. Program RHDCUXFT, the UCF program that handles transfers to the front-end:

■ Initiates on the front-end system a task or transaction that has the same name
as was specified by the back-end program. The front-end task or transaction
must be defined to invoke the program to which control is being transferred.

■ Passes data to the front-end, as necessary.

Chapter 4. Distributed Applications Using UCF or APPC 4-5

4.1 UCF programs

■ Terminates the UCF connection.

Program RHDCUXFT must be defined at system generation time with the
following attributes:

LANGUAGE ASSEMBLER REENTRANT NOPROTECT

The figure below shows what happens when control transfers from the back end to the
front-end of a distributed application. In this figure, back-end program B transfers
data and control to front-end program C. To do this, program B executes task TSKC,
which in turn invokes program RHDCUXFT. Program RHDCUXFT passes data and
transfers control to the front-end:

 ┌──┐

 │ ┌─────┐ ┌─────────┐ │

│ Operating ┌──────────────────┤ SVC ←──────┤ Data and←───┐ │

│ System │ └─────┘ │ Control │ │ │

│ Supervisor │ └─────────┘ │ │

 ├────────────────┼──────────────┬──────────────────────────────┼───────┤

 │ │ │ │ │

 │ │ │ │ │

 │ ┌──────↓─────┐ │ ┌────┴─────┐ │

 │ │ Task C │ │ │ Program │ │

│ └──────┬─────┘ │ │ RHDCUXFT │ │

 │ │ │ └────↑─────┘ │

 │ │ │ │ │

 │ ┌──────↓─────┐ │ ┌───────────┐ ┌────┴─────┐ │

│ │ Program C │ │ │ Program B ├────────→ TSKC │ │

 │ └────────────┘ │ └───────────┘ └──────────┘ │

 │ │ │

 └───────────────────────────────┴──────────────────────────────────────┘

UCF Front-End System DC Back-End System

 4.1.1.2 DC back-end

The following information is presented below for the DC back-end:

■ How back-end DC programs transfer control and data

■ How to define tasks and programs for use on the back-end

�� For information about front-end programs, see the discussion later in this chapter
about the front-end system in use at your site.

Back-end DC programs: The following considerations apply to programs
executing on the DC back end:

■ A DC program transferring control to a program on the front-end system:

– Passes data in storage that is USER KEEP LONG with a STGID of PDAT.
The data being passed must begin with a record descriptor word (RDW). The
RDW is the standard four byte prefix for variable length records. The first
two bytes contain the binary length of the data plus 4; the second two bytes
contain binary zeros.

The following example illustrates the storage used to pass the character string
ABCDE:

4-6 CA-IDMS System Operations

4.1 UCF programs

DC H'9',H'�' RDW

DC C'ABCDE' DATA

– Transfers control to the program on the front-end system by returning to DC
and specifying the next task to be executed for the terminal. The specified
task, which must be defined as NOINPUT, indirectly causes the next program
to execute.

In the following example, the DC program specifies that task TSKC is the
next task to be executed:

#RETURN NXTTASK='TSKC'

■ A DC program receiving control from a program on the front-end system retrieves
passed data by obtaining USER KEEP LONG storage with a STGID of PDAT.
The first four bytes of the passed data comprise the RDW.

Defining tasks and programs: When defining tasks and programs on the
back-end DC system, keep in mind that to transfer control from the back-end to the
front-end, the transferring program specifies the next task to be executed. The
specified back-end task must be defined to invoke program RHDCUXFT with the
NOINPUT option (see the example below).

Before terminating the UCF connection, program RHDCUXFT moves the passed data
to the front-end and initiates on the front-end system a task or transaction that has the
same name as the specified back-end task. The front-end task or transaction must be
defined to invoke the program to which control is being transferred.

For example, if program B executes on a DC back-end system and program C
executes on a front-end system, the following back-end definitions are required:

■ DC task definition:

TASK TSKC INVOKES RHDCUXFT NOINPUT.

■ DC program definition:

PROGRAM RHDCUXFT LANGUAGE ASSEMBLER REENTRANT NOPROTECT.

Example of a back-end program: The following example of distributed
applications shows the relevant sections of the DC back-end program (B): Program B
performs the following operations:

1. Obtains the PDAT storage containing the passed data from Program A on the
front-end:

#GETSTG TYPE=(USER,LONG,KEEP),LEN=14,STGID='PDAT',

 ADDR=(R2)

2. Extracts the part number from the passed data:

MVC PARTNUM(1�),4(R2)

3. Frees the 'PDAT' storage:

#FREESTG ADDR=(R2)

4. Issues database calls to obtain the part record with the passed part number

Chapter 4. Distributed Applications Using UCF or APPC 4-7

4.1 UCF programs

5. Obtains new PDAT storage to pass the part information to program C on the
front-end:

#GETSTG TYPE=(USER,LONG,KEEP),LEN=2�,STGID='PDAT',

 ADDR=(R2),INIT='��'

6. Copies the part information into the new PDAT storage:

MVC 4(8,R2),PARTPRIC PRICE

MVC 12(8,R2),PARTQTY QUANTITY ON HAND

MVC �(2,R2),=H'2�' SET LENGTH IN RDW

7. Transfers control to program C on the front-end and returns to DC:

#RETURN NXTTASK='TSKC'

 4.1.1.3 DC front-end

In an environment that consists of two DC systems, each of which owns terminals,
each system can have both a UCF front-end program and a UCFLINE-type line. In
this case, each system can be thought of as either a front-end or a back-end, depending
on the terminal to which the user is assigned.

Distributed applications that are executed in such an environment should always
transfer control by means of the UCF front-end program. The UCF front-end program
will determine whether the associated terminal is already a UCF terminal. If it is, the
program will branch to RHDCUXFT, and the transfer will be handled as a back-end to
front-end transfer.

The methods for transferring control and data used by programs on the DC front-end
are the same as those used by back-end programs. These methods are discussed in
4.1.1.2, “DC back-end” on page 4-6.

 4.1.1.4 CICS front-end

The following information is presented below for applications distributed between a
DC back-end and a CICS front-end:

■ How front-end CICS programs transfer control and data

■ How to define transactions and programs for use on the CICS front end

■ Example of an application distributed between CICS and DC

�� For information about the DC back-end system, see 4.1.1.2, “DC back-end” on
page 4-6.

CICS programs: Programs that execute on the CICS front-end system transfer
control and data as described below:

■ CICS command level — The following conventions apply:

– A CICS command-level program transferring control to a program on the
DC/UCF system queues the next transaction to be executed for the terminal

4-8 CA-IDMS System Operations

4.1 UCF programs

and specifies the location and length of the data to be passed. The specified
transaction indirectly causes the next program to execute.

In the following example, the next transaction to be executed is TSKB, and
the data to be passed is located at PARTNUM:

EXEC CICS START TRANSID('TSKB') TERMID(EIBTRMID)

 FROM(PARTNUM) LENGTH(1�)

When transferring control to a program on the DC/UCF system, a CICS
command-level program returns to CICS:

EXEC CICS RETURN

– A CICS command-level program receiving control from a program on the
DC/UCF system retrieves passed data:

EXEC CICS RETRIEVE INTO(data-area)

 LENGTH(data-length-area)

■ CICS macro level — The following conventions apply:

Important: IBM may remove support for macro-level programs. Therefore, you
should use command-level programs instead.

– A CICS macro-level program transferring control to a program on the other
system queues the next transaction to be executed for the terminal and
specifies the location of the data to be passed. The data being passed must
begin with a record descriptor word (RDW). The specified transaction
indirectly causes the next program to execute.

In the following example, the next transaction to be executed is TSKB, and
the data to be passed is located at PARTNUM:

DFHIC TYPE=PUT,TRMIDNT=TCTTETI,TRANSID=TSKB,

 ICDADDR=PARTNUM

When transferring control to a program on the DC/UCF system, a CICS
macro-level program returns to CICS:

DFHIC TYPE=RETURN

– A CICS macro-level program receiving control from a program DC/UCF
system retrieves passed data:

DFHIC TYPE=GET,IDCADDR=data-address

The first four bytes of the passed data comprise the RDW.

Defining transactions and programs: When defining transactions and programs
for the CICS front-end system, keep in mind that to transfer control from the front-end
to the back-end, the transferring program specifies the next task or transaction to be
executed. The specified task or transaction must be defined to invoke the UCF
front-end program.

When the UCF connection is established, the UCF front-end program moves the
passed data to the back-end and initiates on the back-end system a task that has the
same name as the specified front-end task or transaction. The back-end task must be
defined to invoke the program to which control is being transferred.

Chapter 4. Distributed Applications Using UCF or APPC 4-9

4.1 UCF programs

For example, if program A executes on a CICS front-end system and program B
executes on a DC back-end system, the following front-end definitions are required:

■ CICS transaction definitions:

DFHPCT TYPE=ENTRY,TRANSID=TSKA,

 PROGRAM=A,...

DFHPCT TYPE=ENTRY,TRANSID=TSKB,

 PROGRAM=UCFCICS

■ CICS program definitions:

DFHPPT TYPE=ENTRY,PROGRAM=A,...

DFHPPT TYPE=ENTRY,PROGRAM=UCFCICS,

 PGMLANG=ASSEMBLER,RES=NO,RELOAD=NO

�� For information about defining DC back-end tasks and programs, see 4.1.1.2, “DC
back-end” on page 4-6.

Example of a distributed application: The following example of distributed
applications shows the relevant section of programs A and C on a CICS front-end
system. The programs pass to and receive data from Program B on the DC back-end
system. An example of Program B appears in 4.1.1.2, “DC back-end” on page 4-6.

4-10 CA-IDMS System Operations

4.1 UCF programs

Program A (CICS) performs the following operations:

1. Passes data and transfers control:

EXEC CICS START TRANSID('TSKB') TERMID(EIBTRMID)

 FROM(PARTNUM) LENGTH(1�)

2. Returns to CICS:

EXEC CICS RETURN

Program B on the DC back-end passes the part information and control to program C.

Program C (CICS) performs the following operations:

1. Sets the length of the input area for the passed data:

MVC DATALEN,=H'16' SET LENGTH OF INPUT AREA

2. Retrieves the passed price and quantity information:

EXEC CICS RETRIEVE INTO(PARTPRIC) LENGTH(DATALEN)

 4.1.1.5 IMS-DC front-end

The following information is presented below for applications distributed between a
DC back-end and an IMS-DC front-end:

■ How programs transfer control and data

■ How programs receive control and data

�� For information about the DC back-end system, see 4.1.1.2, “DC back-end” on
page 4-6.

IMS-DC programs: When an IMS-DC program transfers control to a program on
the DC/UCF system, the batch program:

1. Identifies the next DC task or transaction to be executed. To do this, the IMS-DC
program issues a CHNG call that modifies the destination of a modifiable alternate
program communication block (PCB). The destination is changed to the IMS-DC
transaction code that identifies the next DC task or transaction to execute.

The IMS-DC TRANSACT macro is used to name intermittent transaction codes,
as shown below:

APPLCTN PSB=ucfims,SHCDTYP=PARALLEL

TRANSACT CODE=(dedicated-task-code,intcode...),

 MSGTYPE=(SNGLSEG,RESPONSE),SPA=spasize.

In the above sample TRANSACT macro:

■ Dedicated-task-code specifies the dedicated task code that matches the NTID
parameter of the #UCFUFT macro in the UCF front-end table.

■ Intcode, specifies one or more optional intermittent task codes, such as IDD
OLQ, OLM, or DCMT. Separate multiple intermittent task codes by using
commas.

Chapter 4. Distributed Applications Using UCF or APPC 4-11

4.1 UCF programs

■ Spasize specifies 134 plus the value specified for SPAOFST on the #UCFIMS
macro.

2. Moves the transaction code for the next DC task or transaction to the transaction
code field of the scratchpad area and moves the string XFER to an offset of
SPAOFST (specified in the #UCFIMS macro) beyond the transaction code field.

The back-end task must be defined to the front-end as an intermittent code
transaction.

3. Issues an ISRT call with the modified SPA against the alternate PSB.

4. Optionally passes data to IDMSTASK by issuing another ISRT call against the
alternate PCB.

When all transfer processing is completed, the IMS-DC front-end program terminates.

Receiving control and data: When an IMS-DC program receives control from a
back-end (DC) program, the front-end program performs the same functions that a
program transferring control performs, as described above.

The character string "XFER" in the SPA indicates to the IMS-DC transaction that it
has received control from the DC back-end.

 4.1.1.6 UTM front-end

The following information is presented below for applications distributed between a
DC back-end and a UTM front-end:

■ How front-end UTM programs transfer control and data

■ Definitions for distributed applications

■ Example of an application distributed between UTM and DC

�� For information about the DC back-end system, see 4.1.1.2, “DC back-end” on
page 4-6.

DC environment: When distributed applications are implemented, this is the
method used to pass data and transfer control when the program involved executes in
the DC environment:

■ A DC program transferring control to a program on the DC/UCF system:

– Passes data in storage that is USER KEEP LONG with a STGID of PDAT.
The data being passed must begin with a record descriptor word (RDW). The
RDW is the standard four-byte prefix for variable-length records. The first
two bytes contain the binary length of the data plus 4. The second two bytes
contain binary zeros.

The following example illustrates the storage used to pass the character string
ABCDE:

4-12 CA-IDMS System Operations

4.1 UCF programs

DC H'9',H'�' RDW

DC C'ABCDE' DATA

– Transfers control to the program on the DC/UCF system by returning to DC
and specifying the next task to be executed for the terminal. The specified
task, which must be defined as NOINPUT, indirectly causes the next program
to execute.

In the following example, the DC program specifies that task TSKC is the
next task to be executed:

#RETURN NXTTASK='TSKC'

■ A DC program receiving control from a program on the other system retrieves
passed data by obtaining USER KEEP LONG storage with a STGID of PDAT.
The first four bytes of the passed data comprise the RDW.

UTM environment: When distributed applications are implemented, this is the
method used to pass data and transfer control when the program involved executes in
the UTM environment:

■ A UTM program unit transferring control to a program on the DC/UCF system:

– Passes data by means of the local secondary storage area. The name of the
area is PDAT.

– Transfers control to the program on the DC/UCF system by returning to UTM
and specifying the next task to be executed for the terminal. The specified
transaction indirectly causes the next program to execute.

■ A UTM program unit receiving control from a program on the other system
retrieves passed data by means of the local secondary storage area. The name of
the area is PDAT.

Defining transactions and programs: When defining transactions and programs
for the UTM front-end system, keep in mind that to transfer control from the front-end
to the back end, the transferring program specifies the next task or transaction to be
executed. The specified task or transaction must be defined to invoke the UCF
front-end program.

When the UCF connection is established, the UCF front-end program moves the
passed data to the back-end and initiates on the back-end system a task that has the
same name as the specified front-end task or transaction. The back-end task must be
defined to invoke the program to which control is being transferred.

For example, if program A executes on a UTM front-end system and program B
executes on a DC back-end system, the following front-end definitions are required:

■ UTM transaction definitions:

 TAC TSKA,CALL=FIRST,...

 TAC TSKB,CALL=NEXT,...

■ UTM program definitions:

Chapter 4. Distributed Applications Using UCF or APPC 4-13

4.1 UCF programs

 KDCPRG NAME=A,TACS=TSKA

 KDCPRG NAME=UCFUTMPD,

 TACS=TSKB

When transferring control from the back-end to the front-end, the transferring program
specifies the next task to be executed. The specified task must be defined on the
back-end to invoke program RHDCUXFT.

Before terminating the UCF connection, program RHDCUXFT moves the passed data
to the front-end and initiates on the front-end system a task or transaction that has the
same name as the specified back-end task. The front-end task or transaction must be
defined to invoke the program to which control is being transferred.

For example, if program B executes on a DC back-end system and program C
executes on a UTM front-end system, the following front-end definitions are required:

■ UTM transaction definition:

 TAC TSKC,CALL=NEXT,...

■ UTM program definition:

 KDCPRG NAME=C,TACS=TSKC

Example of a distributed application: The following example of distributed
applications shows the relevant sections of two front-end programs (A and B).
Program B, the DC back end program appears in 4.1.1.2, “DC back-end” on page 4-6.

Program A (UTM) performs the following operations:

1. Passes the part number:

 �3 NB.

 �5 PARTNUM PIC X(1�).

 .

 .

 .

 .

 .

 .

 MOVE "SPUT" TO KCOP.

 MOVE "DL" TO KCOM.

 MOVE 1� TO KCLA.

 MOVE "PDAT " TO KCRN.

 CALL "KDCS" USING KCPAC, NB.

2. Transfers control and returns to UTM:

 MOVE "PEND" TO KCOP.

 MOVE "PR" TO KCOM.

 MOVE "TSKB " TO KCRN.

 CALL "KDCS" USING KCPAC.

Program B (DC passes data and control to Program C and returns to DC.

Program C (UTM) retrieves the passed price and quantity information:

4-14 CA-IDMS System Operations

4.1 UCF programs

 �3 NB.

 �5 PARTPRIC PIC X(8).

 �5 PARTQTY PIC X(8).

 .

 .

 .

 .

 .

 .

 MOVE "SGET" TO KCOP.

 MOVE "RL" TO KCOM.

 MOVE 16 TO KCLA.

 MOVE "PDAT " TO KCRN.

 CALL "KDCS" USING KCPAC, NB.

4.1.2 Non-terminating task data transfer

Non-terminating task data transfer allows a front-end program in one region to
exchange multiple packets of information with a back-end program running in a
CA-IDMS/DC/UCF region. Each packet can contain up to 32000 bytes of data. This
provides a very efficient method for an application running in one region (such as a
WEB access program running in a batch or CICS region) to access and/or update
information in a CA-IDMS database.

Chapter 4. Distributed Applications Using UCF or APPC 4-15

4.1 UCF programs

For example, in the diagram below, control returns to the front-end task (program A)
after the back-end passes the requested information:

Using industry-wide terminology, the UCF back-end is an example of a user-written
connection-oriented server.

To accomplish this,

1. The front-end application links to the UCF distributed application support (UDAS)
synchronous front-end program passing parameters that contain a buffer address
and a buffer size. The UDAS front-end program emulates a UCF terminal to
exchange buffers with the back-end.

2. The back-end UCF system "thinks" it is communicating with a terminal with an
unusually large screen size (up to 31K). The back-end IDMS application is coded
as if it were a conversational task communicating with a terminal.

Front-ends supported: UDAS synchronous supports the following front-ends:

 ■ CICS

 ■ IMS-DC

 ■ BATCH

4-16 CA-IDMS System Operations

4.1 UCF programs

4.1.2.1 Flow of control

The "conversation" between the back-end and front-end applications always originates
on the front-end application by passing the following parameter list to the UDAS
front-end program on all requests:

USERPARM DSECT

USERBUF DS A ADDRESS OF SEND/RECEIVE BUFFER

USERBUFL DS F LENGTH OF SEND/RECEIVE BUFFER

USERSES DS F SESSION ID

USERETCD DS F RETURN CODE

Establishing a session with the back-end system

1. The front-end application links to the UDAS front-end program, specifying
USERSES=0 (all other parameters are ignored)

2. After the UDAS front-end program establishes a session with the back-end system,
it returns control to the front-end application passing a session ID in USERSES
and a return code in USERETCD

The session ID must be passed to the UDAS front-end program on all subsequent
requests. You should check the return code after all requests. A list of valid return
codes appears later in this section.

Allocating a SEND buffer: Next the front-end application links to the UDAS
front-end program with the address and length of a SEND buffer. The first SEND
buffer must contain the task code that is to be invoked on the back-end. Optionally,
the buffer may also contain data to satisfy the first read done by the back-end
application.

The back-end task whose name is specified in the first SEND buffer should be defined
as an INPUT task in the back-end CA-IDMS system.

Passing information back and forth: After a session is established and a
back-end application has been invoked, the front-end and back-end application
programs are in a SEND/RECEIVE "conversation". The back-end application has
control of the conversation. The front-end application always links to the UDAS
front-end program with a buffer address.

If the back-end application does a write (#TREQ PUT), then the UDAS front-end
program will move the data that the back-end application has written into the front-end
application's buffer. The USERBUFL parameter indicates the maximum buffer length
that the front-end application can receive. After the UDAS front-end program has
moved data into the buffer, USERBUFL will contain the actual length of the data
received.

If the back-end application does a read (#TREQ GET), then the UDAS front-end
program will get data from the front-end application's buffer and send it to the
back-end.

Chapter 4. Distributed Applications Using UCF or APPC 4-17

4.1 UCF programs

Ending a conversation: To terminate the conversation, the back-end program
must link to the program RHDCBYE. RHDCBYE terminates the session and frees
resources so that the session can be used by other front-end programs.

4-18 CA-IDMS System Operations

4.1 UCF programs

UDAS SEND/RECEIVE flow diagram

Front-End UDAS Front-End Back-End Back-End

Application Program UCF Application

USERSES=� ─────────� New session

 (signon) initialization

BIND 59 ─────────────� Establish session

 <-------------

SEND ready ──────────�

<------------ Read for task code

 and input

Signon complete <--- Return with USERSES

Return code 4

USERBUF=taskcode+input

 (SEND) ───────────� Send data to back end Start task ─────� #TREQ GET

First <---------- (READ)

 input already

received ───────� Read complete

 �������������

 Process

 �������������

Send complete <----- Return <------------------------------- #TREQ PUT

Return code 8 (WRITE)

USERBUF=buffer

USERBUFL=max ──────� Move data to buffer

Put length in USERBUFL

Write complete ───────────────────────� Write complete

 Repeat write,

 if needed.

Read for next

 request.

Receive com- <----- Return <-------------------------------- #TREQ GET

plete.

Return code 4.

No more requests.

Send 'All Done' ──� Send data to back end ─────────────────� Read complete.

Finish session <--- RHDCBYE <------- Link to BYE

Send complete. <-- Return ────────────────────────────────� #RETURN

Return code �.

End

Return codes: When the front-end application gets control back from UDAS, the
USERETCD field will be filled in with an appropriate return code:

Chapter 4. Distributed Applications Using UCF or APPC 4-19

4.1 UCF programs

Return codes are useful in keeping the front-end and back-end applications in sync
with each other regarding reads (SENDS) and writes (RECEIVES). For example, if
the front-end application gets control back from UDAS with a return code of 8, but the
application was expecting to do a read, then the two applications are out of sync and
should be debugged. As another example, if the back-end application abends, a
"FINISH" request is sent to the front-end (RC = 0) when the application was probably
expecting a read or write request.

Considerations for the back-end program

■ If data is sent with the task code on the first SEND from the front end to the
back-end, the back-end application will receive blanks the length of the task code
before it's data.

■ The back-end application must always link to RHDCBYE to terminate a
conversation and clean up the session. Some recommendations to guarantee that
RHDCBYE is invoked:

1. Code all read and write macros (#TREQ) with COND=ALL, so that the
back-end application will get control if there is an I/O error and then can link
to RHDCBYE.

2. Resource time out should be generated to invoke RHDCBYE. This is the
default.

3. The back-end application should establish a STAE exit that will get control
and link to RHDCBYE in case it terminates abnormally.

Return code Meaning

0 The SEND/RECEIVE communication between the front-end
and the back-end is closed and finished normally.

4 A "READ" is expected (SEND). The next call to UDAS will
send data in USERBUF to the back-end application.

8 A "WRITE" is expected (RECEIVE). The next call to UDAS
will receive data from the back-end and put data in
USERBUF.

Greater than 8 Any other value in USERETCD is abnormal and is typically
an abend condition. In most cases, any other code will be a
4-character alphabetic abend code, such as A101. For more
information on these codes, see CA-IDMS Messages and
Codes.

4-20 CA-IDMS System Operations

4.1 UCF programs

Examples of a UDAS DC back-end application: Sample Assembler and
COBOL programs

Sample UDAS DC back-end Assembler program

UCFTEST1 TITLE 'UDAS TEST SEND RECEIVE'

� SAMPLE UDAS IDMS/DC BACK-END APPLICATION

� UCFTEST1 EP=UCFEP1

 #MOPT CSECT=UCFTEST1,ENV=USER

UCFTEST1 CSECT

 ENTRY UCFEP1

UCFEP1 DS �H

 LR R12,R15

 USING UCFEP1,R12

 SPACE

 #GETSTG LEN=WORKLEN,PLIST=�,ADDR=(R4),TYPE=(USER,SHORT), X

 INIT=X'��'

 USING WORKD,R4

� Set up STAE exit

 #STAE PGM='RHDCBYE'

� GET REQUEST

GETREQ DS �H

 #TREQ GET,INAREA=INAREA,MAXIN=INLEN,COND=ALL,OPTNS=(UPLOW)

LR R3,R15 SAVE RETURN CODE FROM READ.

#SNAP TITLE='UCFTEST1, INAREA/PARTIAL OUTAREA', X

 AREA=(INAREA,INLEN,OUTAREA,1��)

LTR R3,R3 ANY ERRORS ON READ?

BNZ ERROR YES, HANDLE ERROR.

� CHECK FOR LAST INDICATION FROM FRONT-END

 CLC INAREA(8),=C'ALL DONE' FRONT-END FINISHED?

 BE DISCON YES, DISCONNECT.

CLC INAREA(8),=C'SUSPEND ' FRONT-END FINISHED FOR NOW?

 BE RETURN YES, SUSPEND.

 SPACE

��

�� TALK TO DATA BASE TO CREATE RESPONDE ��

��

 SPACE

� SEND RESPONSE IN TWO BUFFERS

 #TREQ PUT,OUTLEN=OUTLEN,OUTAREA=OUTAREA,COND=ALL

 LTR R15,R15 ANY ERRORS?

 BNZ DISCON YES, DISCONNECT

 #TREQ PUT,OUTLEN=OUTLE2,OUTAREA=OUTARE2,COND=ALL

 LTR R15,R15 ANY ERRORS?

 BNZ DISCON YES, DISCONNECT

B GETREQ GO GET NEXT REQUEST

 SPACE

DISCON DS �H

 #LINK PGM='RHDCBYE'

 SPACE

RETURN DS �H

� WE ARE INVOKED AS AN INTERMITTENT TASK, SO THIS TERMINAL

� WILL BE SUSPENDED IF WE HAVEN'T GONE THROUGH BYE

� PROCESSING.

 #RETURN

ERROR DC H'�' USER FRIENDLY ERROR HANDLING?

Chapter 4. Distributed Applications Using UCF or APPC 4-21

4.1 UCF programs

 LTORG

OUTAREA DC C'FIRST WRITE ���������##END DATA'

OUTLEN EQU �-OUTAREA

 SPACE

OUTARE2 DC C'2ND WRITE - REPEAT ##########'

 DC 3����X'C2'

 DC C'##END HERE'

OUTLE2 EQU �-OUTARE2

 #BALI

WORKD DSECT

SYSPLIST DS 1�A

INAREA DC 8�X'��'

INLEN EQU �-INAREA

WORKLEN EQU �-WORKD

 END UCFEP1

4-22 CA-IDMS System Operations

4.1 UCF programs

Sample UDAS DC back-end COBOL program

�RETRIEVAL

 ID DIVISION.

 PROGRAM-ID. UCFTESTC.

� THIS SAMPLE COBOL PROGRAM HAS SAME FUNCTIONALITY

� AS ASSEMBLER PROGRAM UCFTEST1. IT IS AN EXAMPLE OF

� A BACK-END UDAS COBOL APPLICATION PROGRAM.

 ENVIRONMENT DIVISION.

 IDMS-CONTROL SECTION.

 PROTOCOL MODE IS IDMS-DC.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 WS-START PIC X(5�) VALUE

'����� UCFTESTC WORKING STORAGE STARTS HERE �����'.

 �1 OUTAREA PIC X(31) VALUE 'FIRST WRITE ���������##END DATA'.

 �1 OUTAREA2.

�5 FILLER PIC X(29) VALUE '2ND WRITE - REPEAT ##########'.

�5 OUTAREA2-2 PIC X VALUE 'B' OCCURS 3����.

�5 FILLER PIC X(1�) VALUE '##END HERE'.

�5 OUTAREA2-END PIC X.

 �1 INAREA.

�5 INAREA1 PIC X(8) VALUE SPACES.

88 ALL-DONE VALUE 'ALL DONE'.

88 SUSPEND VALUE 'SUSPEND '.

�5 INAREA2 PIC X(72) VALUE SPACES.

 �1 INLEN PIC S9(8) USAGE COMP.

 �1 PROCESSING-INDICATOR PIC X VALUE 'C'.

88 CONTINUE-REQUESTED VALUE 'C'.

 88 SUSPEND-REQUESTED VALUE 'S'.

 88 BYE-REQUESTED VALUE 'B'.

 �1 SNAP-TITLE PIC X(134)

VALUE 'UCFTESTC, INAREA/PARTIAL OUTAREA'.

 EJECT

 �1 COPY IDMS SUBSCHEMA-CTRL.

 EJECT

 PROCEDURE DIVISION.

 1��-MAIN-ROUTINE SECTION.

� SET UP ABEND EXIT. IF PROGRAM TERMINATES ABNORMALLY,

� RHDCBYE WILL BE CALLED. THIS WILL NOTIFY FRONT-END

� THAT BACK-END HAS TERMINATED (RETURN CODE OF � WILL

� BE RETURNED TO FRONT-END UDAS APPLICATION PROGRAM).

� FRONT-END PROGRAM SHOULD TAKE APPROPRIATE ACTION.

�

SET ABEND EXIT ON PROGRAM 'RHDCBYE'.

PERFORM 2��-SEND-RECEIVE UNTIL NOT CONTINUE-REQUESTED.

 IF BYE-REQUESTED

THEN TRANSFER CONTROL TO 'RHDCBYE' RETURN.

 GOBACK.

 2��-SEND-RECEIVE SECTION.

� RECEIVE REQUEST FROM FRONT-END. PROCESS REQUEST.

� IF FRONT-END SENDS AN INDICATOR TO TERMINATE, SET

� APPROPRIATE FLAG.

Chapter 4. Distributed Applications Using UCF or APPC 4-23

4.1 UCF programs

�

� TEST PROGRAM PROCESSING JUST CONSISTS OF SNAPPING

� A PORTION OF THE INPUT/OUTPUT BUFFERS AND SENDING

� TWO FIXED BUFFERS TO FRONT-END FOR EACH FRONT-END

� REQUEST.

READ TERMINAL INTO INAREA MAX LENGTH 8�

RETURN LENGTH INTO INLEN.

 PERFORM IDMS-STATUS.

SNAP TITLE SNAP-TITLE FROM INAREA LENGTH INLEN

FROM OUTAREA LENGTH 1��.

 PERFORM IDMS-STATUS.

 IF ALL-DONE

THEN MOVE 'B' TO PROCESSING-INDICATOR

GO TO SEND-RECEIVE-EXIT.

 IF SUSPEND

THEN MOVE 'S' TO PROCESSING-INDICATOR

GO TO SEND-RECEIVE-EXIT.

� AT THIS POINT, A REAL APPLICATION WOULD MAKE

� DATABASE CALLS AND/OR PERFORM OTHER PROCESSING

� BASED ON THE MESSAGE FROM THE FRONT-END.

� FOR TEST PURPOSES, JUST SEND TWO BUFFERS,

� THEN ISSUE READ TO GET NEXT MESSAGE FROM FRONT-END.

WRITE TERMINAL FROM OUTAREA LENGTH 31.

 PERFORM IDMS-STATUS.

WRITE TERMINAL FROM OUTAREA2 TO OUTAREA2-END.

 PERFORM IDMS-STATUS.

 SEND-RECEIVE-EXIT.

 EXIT.

COPY IDMS IDMS-STATUS.

 IDMS-ABORT SECTION.

 IDMS-ABORT-EXIT.

 EXIT.

 4.1.2.2 CICS front-end

You create the CICS UDAS front-end program identically to a normal UCF CICS
front-end except you use the macro #UDASCIC instead of #UCFCICS. You don't
need the IDMSCICZ module for #UDASCIC; however, you should include the
IDMSTRUE module to clean up sessions after a front-end application abends or
terminates without ending the session.

CAUTION:
Be sure that the IDMSINTC and IDMSCINT macros specify the same CWADISP
parameters.

4-24 CA-IDMS System Operations

4.1 UCF programs

�� For information about the #UCFCICS macro, see CA-IDMS System Generation.

For information about IDMSINTC, IDMSCINT, and IDMSTRUE, see Chapter 6,
“TP-Monitor Considerations.”

These limitations exist under CICS:

■ No terminal-less tasks allowed.

■ SEND/RECEIVE conversations cannot extend over a pseudo-converse

■ Only CICS command level programming is allowed for the front-end application.

Sample programs: Below is a sample CICS front-end assembly followed by a
sample CICS application. Note that the front-end assembly specifies the largest
possible buffer size in the front-end table. It also specifies only one #UCFUTD
macro.

OS/390 Sample UDAS CICS Front-End Program Assembly

 //� �� ASSEMBLE THE UDASCIC

 //� �

 //�

 //JS�1 EXEC ASMA9�

 //ASM.SYSLIB DD DSN=cics.maclib,DISP=SHR

 // DD DSN=mvs.maclib,DISP=SHR

 // DD DSN=idms.maclib,DISP=SHR

 //ASM.SYSIN DD �

 FE1� TITLE 'UDAS CICS FRONT END'

 UDASCIC #UDASCIC OS=OS

 UCFFET #UCFUFT SYSTEM=CICS,NTID=DBDC

 #UCFUTD TYPE=CRT,BUFSIZ=32���,

 #UCFDEND

 END

 /�

 //LKED.SYSLMOD DD DSN=cics.applic.loadlib,DISP=SHR

 //LKED.OBJLIB DD DSN=idms.distload

 //LKED.MODLIB DD DSN=cics.applic.loadlib,DISP=SHR

 //LKED.CICSLIB DD DSN=cics.loadlib,DISP=SHR

 //LKED.SYSIN DD �

 INCLUDE CICSLIB(DFHEAI)

 INCLUDE OBJLIB(RHDCUCFC)

 INCLUDE MODLIB(IDMSCINT)

 INCLUDE CICSLIB(DFHEAI�)

MODE ADMODE(31), RMODE(24)

 ENTRY UDASCIC

 NAME UDASCIC(R)

 /�

Sample CICS Front-End Application

TITLE 'TESTCICS — UDAS TEST PROGRAM'

 DFHEISTG DSECT

 EYECATCH DS CL8

 DS �F

 COMREG DS �XL14 PARAMETERS TO PASS

 USERBUF DS A ADDRESS OF READ/WRITE BUFFER

Chapter 4. Distributed Applications Using UCF or APPC 4-25

4.1 UCF programs

 USERBUFL DS F LENGTH OF BUFFER/DATA

 USERSES DS F SESSION ID

 USERETCD DS F RETURN CODE

COMLEN EQU �-COMREG LENGTH OF LINK AREA

 SPACE 2

 SNAPLEN DS H'��'

 BUFFER DS XL31���'��' 31K BUFFER

BUFLEN EQU �-BUFFER

 ENDDATA EQU �-COMREG

 TESTCICS CSECT

 LA R12,4�95(R3)

 LA R12,1(R12)

USING TESTCICS,R3,R12 2ND BASE REG

 MVC EYECATCH(8),=CL8'PARMPARM'

 LA R1,COMLEN

STH R1,SNAPLEN LENGTH TO SNAP OUR STORAGE

 SPACE

 � SIGNON TO UDAS (#UDASCIC)

 SPACE

XC USERSES,USERSES NO SESSION ID = SIGNON

 SPACE

EXEC CICS LINK PROGRAM ('UDASCIC') X

 COMMAREA(COMREG) LENGTH(COMLEN)

 SPACE

 � SESSION ID SHOULD HAVE BEEN RETURNED TO US. LETS SNAP IT TO SEE.

 � LA R1,COMLEN

 � STH R1,SNAPLEN LENGTH TO SNAP OUR STORAGE

 � EXEC CICS DUMP FROM(COMREG) LENGTH(SNAPLEN) DUMPCODE(DMP1)

 SPACE

 � TEST RETURN CODE FROM SIGNON. WE EXPECT SEND FIRST.

 CLC USERETCD,=F'4' RC=4 (SEND)?

BNE ERROR NO, WE HAVE AN ERROR.

 SPACE 2

 � OUR FIRST SEND WILL CONTAIN DC TASK CODE AND DATA.

 MVC BUFFER(8),=CL8'UCFTEST1' TASK CODE

MVC BUFFER+8(2�),=CL2�'SAMPLE DATA 12345678'

 SPACE

 LA R1,BUFFER

ST R1,USERBUF GIVE ADDRESS OF BUFFER TO UDAS

LA R1,28 LENGTH OF TASK CODE + DATA

ST R1,USERBUFL GIVE TO UDAS

 SPACE

EXEC CICS LINK PROGRAM ('UDASCIC') X

 COMMAREA(COMREG) LENGTH(COMLEN)

 SPACE

 � EXEC CICS DUMP FROM(COMREG) LENGTH(SNAPLEN) DUMPCODE(DMP2)

 � TEST RETURN CODE — WE EXPECT A RECEIVE NEXT .

CLC USERETCD,=F'8' RC=8 ? (RECEIVE)

BNE ERROR NO, WE HAVE AN ERROR.

 SPACE 2

 � NOW WE WILL RECEIVE TO GET OUR RESPONSE. FOR THIS EXAMPLE

 � WE"LL JUST KEEP READING UNTIL WE GET A RETURN CODE NOT EQUAL TO 8.

� LH R1,=AL2(ENDDATA) WE'LL SNAP ALL OF OUR STORAGE

 � STH R1,SNAPLEN LENGTH TO SNAP

 T1�� LH R1,=AL2(BUFLEN)

ST R1,USERBUFL TELL UDAS MAXIMUM LENGTH TO RECV

 SPACE

 XC BUFFER(2��),BUFFER

 SPACE

4-26 CA-IDMS System Operations

4.1 UCF programs

 � LINK TO UDAS TO RECEIVE

EXEC CICS LINK PROGRAM ('UDASCIC') X

 COMMAREA(COMREG) LENGTH(COMLEN)

 SPACE

 � SNAP STORAGE TO SEE WHAT WE RECEIVED, ACTUAL LENGTH IN USERBUFL.

 � EXEC CICS DUMP FROM(COMREG) LENGTH(SNAPLEN) DUMPCODE(DMP3)

 � TEST RETURN CODE

CLC USERETCD,=F'8' RC=8 ? (RECEIVE)

BE T1�� YES, KEEP RECEIVING.

CLC USERETCD,=F'4' RC=4 ? (SEND)

BNE ERROR NO, SOMETHING WENT WRONG>

 SPACE 2

 � WE COULD SEND ANOTHER DATA REQUEST AT THIS POINT, BUT THIS IS

 � ENOUGH FOR THIS TEST.

 � WE MUST SEND BACKEND DC TASK AN INDICATION THAT WE HAVE NO

 � MORE REQUESTS SO IT CAN SIGNOFF OUR SESSION.

 SPACE

MVC BUFFER(8),=CL8'ALL DONE' TELL BACKEND TASK

LA R1,8 LENGTH OF MESSAGE

ST R1,USERBUFL GIVE TO UDAS

 � LA R1,BUFFER

 � ST R1,USERBUF GIVE ADDRESS OF BUFFER TO UDAS

 SPACE

 � LINK TO UDAS TO SEND

EXEC CICS LINK PROGRAM ('UDASCIC') X

 COMMAREA(COMREG) LENGTH(COMLEN)

 SPACE

EXEC CICS DUMP FROM(COMREG) LENGTH(SNAPLEN) DUMPCODE(DMP2)

 � TEST RETURN CODE

OC USERETCD,USERETCD RC=�? — WE EXPECT FINISH.

BNZ ERROR NO, WE HAVE AN ERROR.

 SPACE 2

 � WE'RE ALL DONE

ERROR DS �H

 FINISH DS �H

 B RETURN

 SPACE 3

DMP� DC C'IMUP'

DMP1 DC C'SIGN'

DMP2 DC C'SEND'

DMP3 DC C'RECV'

DMPY DC C'YESS'

DMPN DC C'NONO'

 SPACE

 R� EQU �

 R1 EQU 1

 RETURN DS �H

EXEC CICS DUMP FROM(COMREG) LENGTH(SNAPLEN) DUMPCODE(DMP�)

EXEC CICS RETURN

 END

Chapter 4. Distributed Applications Using UCF or APPC 4-27

4.1 UCF programs

4.1.2.3 Batch and IMS-DC front-ends

The interfaces for IMS-DC and BATCH front-end UDAS applications both use the
same macro (#UDASBCH) to create UDAS front-end programs. In both
environments, acquired operating system storage can be cleaned up if the front-end
abends.

Calling conventions to UDAS: Under both IMS-DC and BATCH, the same
calling conventions are used to link to UDAS from the front-end application program:

Calling the UDAS front-end: To call the UDAS front-end for a request, use the
Assembly language instructions below:

LA R1,USERPARM

L R15,=V(udasb)

BALR R14,R15

where udasb is the entry point created when assembling #UDASBCH.

How to create a front-end module: To create the UDAS IMS-DC or BATCH
front-end module, assemble a #UDASBCH macro and optionally a #UIMSABR macro.
Link edit the resulting object module with RHDCUCFC and IDMS. The #UIMSABR
macro has no parameters. It is required unless IMS=NO is specified when coding
#UDASBCH.

Syntax: The #UDASBCH macro must be labeled. The label provides the module's
entry point name. The label must not be UDASBCH, since a CSECT by that name is
generated by the macro.

��─ label #UDASBCH ───�

 �─┬───┬────────────────────────────�

└─┬─ SYSTEM ──┬─ = ─┬─ BATCH ← ─────────────┬─┘

└─ UCFSYST ─┘ └─ front-end-system-id ─┘

 �─┬──────────────────┬─┬─────────────────────────────┬───────────────────────�

└─ OS= ─┬─ OS ← ─┬─┘ └─ BUFSIZ= ─┬─ 8��� ← ──────┬─┘

├─ DOS ──┤ └─ buffer-size ─┘

└─ BS2K ─┘

 �─┬────────────────────┬───��

└─ IMS= ─┬─ YES ← ─┬─┘

└─ NO ────┘

 Parameters

SYSTEM/UCFSYST
The rules for the front-end system name are the same as those described in
Chapter 5, “UCF Operations” for macro #UCFUFT.

R1 User parameter block

R13 18-word save area

R14 Return address

R15 V(UDAS front-end entry point)

4-28 CA-IDMS System Operations

4.1 UCF programs

OS=OS/DOS/BS2K
Defines the operating system environment. Use OS for OS/390 operating systems,
DOS for VSE/ESA operating systems, and BS2K for BS2000/OSD operating
systems. If IMS=YES is coded, OS=OS must be coded or omitted as the default.

BUFSIZ=buffer-size
Specifies the size of the buffer that will be allocated to pass data between the
front-end and the back-end. Buffer-size must be at least as big as the largest
output buffer length specified by either the front-end or back-end programs. The
default is 8000.

IMS=YES/NO
Specifies whether or not an ESPIE and ESTAE environment will be established to
clean up any OS/390 storage allocated by the front-end program if the front-end
application abends. It is recommended that this parameter be coded for an
IMS-DC front-end to avoid possible storage build-up. IMS=NO is recommended
for a non-IMS environment since the ESPIE or ESTAE exit will free storage that
may be useful in debugging the cause of the abend.

Sample OS/390 front-end assembly: The following is sample JCL for a UDAS
batch front-end assembly and link.

// EXEC ASMA9�

//C.SYSLIB DD DSN=USER.MVS.MACLIB,DISP=SHR

// DD DSN=IDMS.MACLIB,DISP=SHR

//C.SYSIN DD �

UDASB #UDASBCH BUFSIZ=32���,IMS=NO

 END

/�

//L.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR

//L.IDMSLIB DD DSN=IDMS.DISTLOAD,DISP=SHR

//L.SYSIN DD �

 INCLUDE IDMSLIB(RHDCUCFC,IDMS)

 NAME UDASBCHI(R)

Sample OS/390 front-end application assembly: The following is sample
OS/390 JCL for assembling and linking either an IMS-DC or BATCH UDAS
application program.

// EXEC ASMHL

//C.SYSLIB DD DSN=USER.MVS.MACLIB,DISP=SHR

// DD DSN=IDMS.MACLIB,DISP=SHR

//C.SYSIN DD DSN=USER.SRCLIB(UDASTSTB),

// DISP=SHR

//L.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR

//L.SYSIN DD �

 INCLUDE SYSLMOD(UDASBCHI)

 MODE AMODE(31),RMODE(24)

 ENTRY UDASTSTB

 NAME UDASTSTB(R)

Sample VSE/ESA front-end assembly: The following is sample JCL for a
UDAS batch front-end assembly.

Chapter 4. Distributed Applications Using UCF or APPC 4-29

4.1 UCF programs

// DLBL idmslib

// EXTENT ,nnnnnn

// LIBDEF �,SEARCH=idmslib.sublib

// DLBL IJSYSPH,'WRK1WORK',�

// EXTENT SYSPCH,wrkvol,,,ssss,llll

 ASSIGN SYSPCH,DISK=VOL=wrkvol,SHR

// OPTION DECK

// EXEC ASSEMBLY,SIZE=128K

PUNCH 'CATALOG udasbch.OBJ R=YES'

UDASB #UDASBCH OS=DOS,IMS=NO,BUFSIZ=32���

 END

/�

 CLOSE SYSPCH,PUNCH

// DLBL IJSYSIN,'WRK1WORK'

// EXTENT SYSIPT,wrkvol

 ASSIGN SYSIPT,DISK,VOL=wrkvol,SHR

// EXEC LIBR,PARM='A S=idmslib.sublib'

 CLOSE SYSIPT,READER

4-30 CA-IDMS System Operations

4.1 UCF programs

Sample VSE/ESA front-end application assembly: The following is sample
VSE/ESA JCL for assembling and linking a BATCH UDAS application program.

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE udaststb,�

// EXEC ASSEMBLY

UDAS application source statements

/�

 INCLUDE udasbch

 INCLUDE RHDCUCFC

 INCLUDE IDMS

 ENTRY udasb

Sample front-end Assembler application program: The following is a sample
front-end Assembler program. See comments in program source for tailoring the
program for either OS/390 or VSE/ESA operating systems.

� SAMPLE UDAS IDMS/DC FRONT-END BATCH APPLICATION

� This sample program can be assembled and linked

� to run on either an OS (MVS, OS/39�) or DOS (VSE)

� operating system. The program will start a

� conversation with a back-end test program. It is

� designed to work correctly with the sample back-end

� program documented earlier in this Chapter.

� One or more conversations can be started in the same

� sample run. The conversations run serially, not in

� parallel. I.e., one conversation starts after the

� previous conversation terminates. Two SETC parameters

� immediately below should be set as follows before

� assembling this sample program:

� &OPSYS: OS: OS operating systems.

� DOS: VSE operating systems.

� &LOOPMAX This value determines the number of

� conversations which will be opened with

� the back-end in each run of the sample

� program. Each conversation will result in

� one invocation of the back-end task UCFTEST1.

�

&OPSYS SETC 'OS'

&LOOPMAX SETC '2'

UDASTSTB CSECT

 B MAIN-UDASTSTB(,R15)

 #MOPT CSECT=UDASTSTB,ENV=USER,RMODE=24

MAIN DS �H

 STM R14,R12,12(R13)

 LR R12,R15

 USING UDASTSTB,R12

 ST R13,SAVEAREA+4

 LR R2,R13

 LA R13,SAVEAREA

 ST R13,8(R2)

 SPACE

� OPEN SYSLST FOR DEMO OUTPUT

L R14,=A(AMODE24) DO I/O IN AMODE 24.

Chapter 4. Distributed Applications Using UCF or APPC 4-31

4.1 UCF programs

 BALR R14,R14

AIF ('&OPSYS' EQ 'DOS').DOS1

 OPEN (SYSLST,OUTPUT)

 AGO .DONE1

.DOS1 ANOP

 OPEN SYSLST

.DONE1 ANOP

L R14,=A(AMODE31) RETURN TO NORMAL AMODE.

 BALR R14,R14

� VSE TEST FOR OPEN

AIF ('&OPSYS' EQ 'DOS').DOS2

 TM SYSLST+DCBOFLGS-IHADCB,DCBOFOPN

 AGO .DONE2

.DOS2 ANOP

 TM SYSLST+21,X'8�'

.DONE2 ANOP

 BO OPENOK

 DC H'�'

DC C'OPEN OF SYSLST FAILED'

OPENOK DS �H

 SPACE

� SET UP FOR SIGNON TO UDAS.

XC USERSES,USERSES NO SESSION ID = SIGNON.

LA R1,USERPARM POINT TO PARM BLOCK.

 L R15,UDASBCH

 BALR R14,R15

 BAL R8,DISPLAY

 SPACE

� TEST RETURN CODE FROM SIGNON. WE EXPECT SEND FIRST.

 CLC USERETCD,=F'4' RC=4 (SEND)?

 BE SEND1

 DC H'�'

DC C'BAD RETURN CODE FROM SIGNON'

 EJECT

� OUR FIRST SEND WILL CONTAIN IDMS-DC TASK CODE AND DATA.

SEND1 DS �H

 MVC BUFFER(9),=CL9'UCFTEST1 ' TASK CODE

MVC BUFFER+9(2�),=CL2�'SAMPLE DATA 12345678'

 SPACE

 LA R1,BUFFER

ST R1,USERBUF GIVE ADDRESS OF BUFFER TO UDAS

LA R1,29 LENGTH OF TASK CODE + DATA

ST R1,USERBUFL GIVE TO UDAS

 SPACE

 LA R1,USERPARM

 L R15,UDASBCH

 BALR R14,R15

 BAL R8,DISPLAY

 SPACE

� TEST RETURN CODE - WE EXPECT A RECEIVE NEXT.

CLC USERETCD,=F'8' RC=8 ? (RECEIVE)

 BE T1�� YES. CONTINUE.

 DC H'�'

DC C'BAD RETURN CODE FROM FIRST SEND'

T1�� DS �H

 LH R1,=AL2(BUFLEN)

ST R1,USERBUFL TELL UDAS MAXIMUM LENGTH TO RECV

 SPACE

 XC BUFFER(2��),BUFFER

4-32 CA-IDMS System Operations

4.1 UCF programs

 SPACE

� LINK TO UDAS TO RECEIVE

 LA R1,USERPARM

 L R15,UDASBCH

 BALR R14,R15

 BAL R8,DISPLAY

� GO PROCESS DATA FROM BACK-END.

 BAL R14,PROCESS

� TEST RETURN CODE

CLC USERETCD,=F'8' RC=8 ? (RECEIVE)

BE T1�� YES, KEEP RECEIVING

 CLC USERETCD,=F'4' RC=4 (SEND)?

 BE T2�� YES.

 DC H'�'

DC C'BAD RETURN CODE FROM FIRST SEND'

 EJECT

� WE COULD SEND ANOTHER DATA REQUEST AT THIS POINT, BUT THIS IS

� ENOUGH FOR THIS TEST.

� WE MUST SEND BACK-END IDMS-DC TASK AN INDICATION THAT WE HAVE NO

� MORE REQUESTS SO IT CAN SIGNOFF OUR SESSION.

T2�� DS �H

 MVI BUFFER,C' '

 MVC BUFFER+1(255),BUFFER

MVC BUFFER(8),=CL8'ALL DONE' TELL BACK-END TASK

LA R1,8 LENGTH OF MESSAGE

ST R1,USERBUFL GIVE TO UDAS

 SPACE

� LINK TO UDAS TO SEND

 LA R1,USERPARM

 L R15,UDASBCH

 BALR R14,R15

 BAL R8,DISPLAY

 SPACE

� TEST RETURN CODE

OC USERETCD,USERETCD RC=�? - WE EXPECT FINISH.

 BE FINISH

 DC H'�'

DC C'DID NOT GET EXPECTED FINISH'

FINISH DS �H

 L R3,LOOPCTR

 LA R3,1(,R3)

 ST R3,LOOPCTR

 C R3,LOOPMAX

 BL OPENOK

L R14,=A(AMODE24) DO I/O IN AMODE 24.

 BALR R14,R14

AIF ('&OPSYS' EQ 'DOS').DOS3

 CLOSE (SYSLST)

� USE R15 RETURN CODE FROM CLOSE TO SET OS R/C. SHOULD BE �.

 AGO .DONE3

.DOS3 ANOP

 CLOSE SYSLST

LA R15,� SET DOS RETURN CODE.

.DONE3 ANOP

L R14,=A(AMODE31) RETURN TO NORMAL AMODE.

 BALR R14,R14

RETURN DS �H

 L R13,4(,R13)

 L R14,12(,R13)

Chapter 4. Distributed Applications Using UCF or APPC 4-33

4.1 UCF programs

 LM R�,R12,2�(R13)

 BR R14

 EJECT

DISPLAY DS �H

� CONVERT UDAS RETURN CODE TO PRINTABLE FORMAT

� AND PRINT IT AT BEGINNING OF BUFFER.

 L R15,USERETCD

OC USERETCD(1),USERETCD HIGH ORDER BYTE ZERO?

BZ DISPDEC YES. CONVERT TO DECIMAL.

MVC RETCODEC(4),USERETCD NO. TREAT AS CHARACTER.

 MVC RETCODEC+4(4),=CL4' '

 B DISPPRNT

DISPDEC DS �H

 CVD R15,WORKDBL

 UNPK RETCODEC,WORKDBL

 OI RETCODEC+L'RETCODEC-1,X'F�'

DISPPRNT DS �H

L R14,=A(AMODE24) DO I/O IN AMODE 24.

 BALR R14,R14

AIF ('&OPSYS' EQ 'DOS').DOS4

 PUT SYSLST,LSTBUF

 AGO .DONE4

.DOS4 ANOP

 PUT SYSLST,LSTBUF

.DONE4 ANOP

L R14,=A(AMODE31) RETURN TO NORMAL AMODE.

 BALR R14,R14

 BR R8

 SPACE 2

AMODE24 ST R14,SAVAMODE SAVE CURRENT ADDRESSING MODE

TM SAVAMODE,X'8�' WERE WE RUNNING IN 31-BIT MODE ?

BZR R14 NO, JUST RETURN

LA R14,�(R14) CLEAR AMODE=31 BIT

 BSM �,R14 SET AMODE=24

 SPACE 2

AMODE31 TM SAVAMODE,X'8�' WERE WE ORIGINALLY IN 31-BIT MODE

BZR R14 NO, JUST RETURN

LA R14,�(,R14) CLEAR HIGH-BYTE FROM RTN ADDR.

O R14,AMODEBIT SET 31-BIT AMODE FLAG.

BSM �,R14 RETURN IN 31-BIT MODE.

 SPACE 2

AMODEBIT DC �F'�',X'8�������'

 EJECT

� PROCESS DATA RECEIVED FROM FRONT-END

� DUMMY ROUTINE FOR SAMPLE.

PROCESS DS �H

 BR R14

 LTORG

 EJECT

AIF ('&OPSYS' EQ 'DOS').DOS5

SYSLST DCB DSORG=PS,RECFM=FBA,LRECL=133,MACRF=(PM),DDNAME=SYSLST

 AGO .DONE5

.DOS5 ANOP

SYSLST DTFPR DEVADDR=SYSLST,IOAREA1=LSTBUF,CTLCHR=ASA,RECFORM=FIXUNB

.DONE5 ANOP

 EJECT

LOOPCTR DC F'�'

LOOPMAX DC F'&LOOPMAX'

SAVEAREA DC 18F'�'

4-34 CA-IDMS System Operations

4.1 UCF programs

SAVAMODE DC F'�'

UDASBCH DC V(UDASB)

USERPARM DS �F

USERBUF DC A(�) ADDRESS OF BUFFER/AREA

USERBUFL DC F'�' LENGTH OF BUFFER/DATA

USERSES DC F'�' SESSION ID

USERETCD DC F'�' RETURN CODE

 SPACE 2

WORKDBL DC D'�'

LSTBUF DC C' R/C:'

RETCODEC DC CL8'��������'

 DC C'. BUFFER:'

BUFFER DS CL32���' ' 32K BUFFER

BUFLEN EQU �-BUFFER

AIF ('&OPSYS' EQ 'DOS').DOS6

 PRINT OFF

 IHADCB

 PRINT ON

 AGO .DONE6

.DOS6 ANOP

.DONE6 ANOP

 END

4.1.2.4 Accessing a UDAS front-end from a COBOL program

Because of the nature of the parameter list passed to UDAS, special coding must be
included in a UDAS front-end COBOL application program. The simplest method is
to link to an Assembler stub program that will modify the COBOL parameter list
before passing it on to UDAS. Source for UDASSTUB, which performs this function,
is shown later in this section.

Sample OS/390 UDASSTUB assembly and link: The following is sample
OS/390 JCL for assembling and linking UDASSTUB.

// EXEC ASMA9�,PARM.L='NCAL'

//C.SYSLIB DD DSN=USER.OS39�.MACLIB,DISP=SHR

// DD DSN=IDMS.MACLIB,DISP=SHR

//C.SYSIN DD USER.SRCLIB(UDASSTUB),DISP=SHR

//L.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR

//L.IDMSLIB DD DSN=IDMS.DISTLOAD,DISP=SHR

//L.SYSIN DD �

 NAME UDASSTUB(R)

Sample VSE/ESA UDASSTUB assembly: The following is sample VSE/ESA
JCL for assembling and linking UDASSTUB.

// DLBL idmslib

// EXTENT ,nnnnnn

// LIBDEF �,SEARCH=idmslib.sublib

// DLBL IJSYSPH,'WRK1WORK',�

// EXTENT SYSPCH,wrkvol,,,ssss,llll

 ASSIGN SYSPCH,DISK=VOL=wrkvol,SHR

// OPTION DECK

// EXEC ASSEMBLY,SIZE=128K

PUNCH 'CATALOG UDASSTUB.OBJ R=YES'

UDASSTUB source statements go here.

/�

Chapter 4. Distributed Applications Using UCF or APPC 4-35

4.1 UCF programs

 CLOSE SYSPCH,PUNCH

// DLBL IJSYSIN,'WRK1WORK'

// EXTENT SYSIPT,wrkvol

 ASSIGN SYSIPT,DISK,VOL=wrkvol,SHR

// EXEC LIBR,PARM='A S=idmslib.sublib'

 CLOSE SYSIPT,READER

Sample OS/390 UDAS COBOL front-end compile and link: The following is
sample OS/390 JCL for compiling and linking a BATCH COBOL UDAS application
program.

// EXEC IGYWCL,PARM.COBOL='LIST,RENT,MAP,NODYNAM',

// PARM.LINK='LIST,XREF,MAP'

//COBOL.SYSIN DD DSN=USER.SRCLIB(UDASTSTB),DISP=SHR

//LINK.SYSLMOD DD DSN=USER.LOADLIB,DISP=SHR

//LINK.SYSIN DD �

 INCLUDE SYSLMOD(UDASSTUB)

 INCLUDE SYSLMOD(UDASBCHI)

 MODE AMODE(31),RMODE(24)

 ENTRY udascobb

 NAME udascobb(R)

Sample VSE/ESA UDAS COBOL front-end compile and link: The following
is sample VSE/ESA JCL for compiling and linking a BATCH UDAS COBOL
application program.

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL,LOG,XREF

 PHASE udascobb,�

// EXEC IGYCRCTL,SIZE=1�24K,PARM='LIST,NODYNAM,RENT,MAP,APOST,LIB'

UDAS application source statements

/�

 INCLUDE UDASSTUB

 INCLUDE udasbch

 INCLUDE RHDCUCFC

 INCLUDE IDMS

 ENTRY udascobb

Sample front-end COBOL program: The following is a sample UDAS front-end
COBOL program. This sample source is valid for either OS/390 or VSE/ESA
operating systems.

 IDENTIFICATION DIVISION.

 PROGRAM-ID. UDASCOBB.

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 �1 WS-TEXT PIC X(3�) VALUE 'WORKING STORAGE STARTS HERE'.

 �1 ABEND-FIELDS.

�5 FORCE-ABEND PIC S9(8) USAGE COMP VALUE +1.

�5 FULL-ZERO PIC S9(8) USAGE COMP VALUE +�.

 �1 UDAS-PARAMETERS.

�5 UDAS-BUFFER-ADDRESS USAGE POINTER.

�5 UDAS-BUFFER-LENGTH PIC S9(8) COMP.

�5 UDAS-SESSION-CODE PIC S9(8) COMP.

4-36 CA-IDMS System Operations

4.1 UCF programs

�5 UDAS-RETURN-CODE PIC S9(8) COMP.

�5 UDAS-RETURN1 REDEFINES UDAS-RETURN-CODE.

1� UDAS-RETURN-ALPHA PIC X(4) .

�5 UDAS-RETURN2 REDEFINES UDAS-RETURN-CODE.

1� UDAS-RETURN-FIRST PIC X(1) .

1� FILLER PIC X(3).

 �1 UDAS-USER-BUFFER.

�5 BUFFER-1 PIC X(4�).

�5 BUFFER-2 PIC X(1����).

�5 BUFFER-3 PIC X(1����).

�5 BUFFER-3 PIC X(1����).

�5 BUFFER-4 PIC X(196�).

 �1 FIRST-BUFFER.

�5 TASK-CODE PIC X(9) VALUE 'UCFTEST1 '.

�5 SAMPLE-DATA PIC X(2�) VALUE 'SAMPLE DATA 12345678'.

�5 FILLER PIC X(11) VALUE SPACES.

 �1 ALL-DONE.

�5 FILLER PIC X(8) VALUE 'ALL DONE'.

�5 FILLER PIC X(32) VALUE SPACES.

 �1 COUNTERS .

�

� LOOP-COUNTER CAN BE ADJUSTED TO SEQUENTIALLY

� START AND END MULTIPLE BACK-END TASKS.

�

�5 LOOP-MAX PIC 9(4) VALUE 2.

�5 LOOP-COUNTER PIC 9(4) VALUE �.

 EJECT

 PROCEDURE DIVISION.

 MAIN SECTION.

PERFORM DO-CONVERSATIONS UNTIL

LOOP-COUNTER = LOOP-MAX.

DISPLAY 'UDASCOBB SUCCESSFULLY COMPLETED '

LOOP-COUNTER ' CONVERSATIONS.'.

 GOBACK.

 DO-CONVERSATIONS SECTION.

ADD 1 TO LOOP-COUNTER.

DISPLAY 'BEGINNING CONVERSATION #' LOOP-COUNTER.

� ESTABLISH COMMUNICATION WITH UDAS.

MOVE � TO UDAS-SESSION-CODE.

 PERFORM CALL-UDAS.

IF UDAS-RETURN-CODE NOT = 4

DISPLAY 'BAD RETURN CODE FROM SIGNON'

 PERFORM ABORT.

� SEND FIRST BUFFER WITH TASK CODE AND SOME SAMPLE DATA.

MOVE FIRST-BUFFER TO BUFFER-1.

MOVE 29 TO UDAS-BUFFER-LENGTH.

 PERFORM CALL-UDAS.

Chapter 4. Distributed Applications Using UCF or APPC 4-37

4.1 UCF programs

� WE EXPECT THE BACK-END TO RETURN DATA SO WE SHOULD HAVE

� A "RECEIVE" REQUEST FROM UDAS.KEEP RECEIVING DATA

� AS LONG AS BACK-END SENDS IT.

IF UDAS-RETURN-CODE NOT = 8

DISPLAY 'BAD RETURN CODE FROM FIRST SEND'

 PERFORM ABORT.

PERFORM RECEIVE-DATA UNTIL UDAS-RETURN-CODE NOT = 8.

� IF WE DON'T GET A RECEIVE REQUEST, WE SHOULD GET A

� SEND REQUEST, I.E., THE BACK-END IS TRYING TO "READ"

� DATA.

IF UDAS-RETURN-CODE NOT = 4

DISPLAY 'UNEXPECTED RETURN CODE AFTER A RECEIVE.'

 PERFORM ABORT.

� WE COULD SEND MORE DATA AT THIS POINT, BUT THIS IS

� ENOUGH FOR TEST PURPOSES. JUST SEND AN INDICATOR

� TO THE BACK-END THAT IS TIME TO CLEAN UP.

MOVE ALL-DONE TO BUFFER-1.

MOVE 8 TO UDAS-BUFFER-LENGTH.

 PERFORM CALL-UDAS.

IF UDAS-RETURN-CODE NOT = �

DISPLAY 'BAD RETURN CODE FROM SIGNOFF REQUEST.'

 PERFORM ABORT.

 ABORT SECTION.

� APPROPRIATE ERROR HANDLING CAN BE PERFORMED HERE.

� FOR TEST PURPOSES WE WILL FORCE A PROGRAM CHECK.

COMPUTE FORCE-ABEND = FORCE-ABEND / FULL-ZERO.

 RECEIVE-DATA SECTION.

� RECEIVE A BUFFER SENT FROM THE BACK-END.

MOVE SPACES TO BUFFER-1.

MOVE 32��� TO UDAS-BUFFER-LENGTH.

 PERFORM CALL-UDAS.

 CALL-UDAS SECTION.

� CALL UDASBCH VIA ASSEMBLER STUB. DISPLAY RETURN

� CODE AND BEGINNING OF CURRENT BUFFER CONTENTS.

DISPLAY 'BUFFER LENGTH BEFORE CALL: ' UDAS-BUFFER-LENGTH.

DISPLAY 'PARTIAL BUFFER CONTENTS : ' BUFFER-1.

CALL 'UDASSTUB' USING UDAS-PARAMETERS

 UDAS-USER-BUFFER.

IF UDAS-RETURN-FIRST = LOW-VALUES

DISPLAY 'RETURN CODE FROM UDAS: ' UDAS-RETURN-CODE

 ELSE

DISPLAY 'RETURN CODE FROM UDAS: ' UDAS-RETURN-ALPHA.

DISPLAY 'BUFFER LENGTH AFTER CALL : ' UDAS-BUFFER-LENGTH.

DISPLAY 'PARTIAL BUFFER CONTENTS : ' BUFFER-1.

4-38 CA-IDMS System Operations

4.1 UCF programs

DISPLAY ' '.

Sample UDASSTUB source: The source shown below can be used in either
OS/390 or VSE/ESA operating systems as an interface between UDAS and a batch
COBOL application program.

� This Assembler stub program is intended to facilitate using

� a COBOL batch program with UDASBCH. It should be called

� using the following COBOL structure:

� �1 UDAS-PARAMETERS.

� �5 UDAS-BUFFER-ADDRESS USAGE POINTER.

� �5 UDAS-BUFFER-LENGTH PIC S9(8) COMP.

� �5 UDAS-SESSION-CODE PIC S9(8) COMP.

� �5 UDAS-RETURN-CODE PIC S9(8) COMP.

� �5 UDAS-RETURN1 REDEFINES UDAS-RETURN-CODE.

� 1� UDAS-RETURN-ALPHA PIC X(4) .

� �5 UDAS-RETURN2 REDEFINES UDAS-RETURN-CODE.

� 1� UDAS-RETURN-FIRST PIC X(1) .

� 1� FILLER PIC X(3).

� �1 UDAS-USER-BUFFER PIC X(32���).

� ...

� CALL 'UDASSTUB' USING UDAS-PARAMETERS

� UDAS-USER-BUFFER.

� ...

�

� All fields EXCEPT UDAS-BUFFER-ADDRESS must be properly

� set by the COBOL calling program. UDASSTUB will take

� the following actions:

� 1) Place the address of UDAS-USER-BUFFER in UDAS-BUFFER-ADDRESS.

� 2) Place the address of UDAS-PARAMETERS in Register 1.

� 3) Branch directly to UDASBCH.

�

� Note that this program assumes it has been called with

� standard IBM COBOL register conventions. Internally

� note that standard register conventions are not used.

� Only registers �, 1, and 15 are modified. Return from

� UDASBCH will be directly to the caller of UDASSTUB.

�

UDASSTUB CSECT

 USING �,15

 L �,VUDASB GET A(UDASBCH).

 DROP 15

� Run without local addressibility from now on.

 L 15,4(,1) GET A(BUFFER).

L 1,�(,1) GET A(PARM BLOCK).

 ST 15,�(,1) SAVE A(BUFFER).

 LR 15,� GET A(UDASBCH).

 BR 15

VUDASB DC V(UDASB) ENTRY POINT UDASB MUST BE RESOLVED

 END

Chapter 4. Distributed Applications Using UCF or APPC 4-39

4.2 Advanced-program-to-program communications

 4.2 Advanced-program-to-program communications

You can achieve non-terminating task data transfer, as described above for UCF
programs, using APPC (advanced-program-to-program communications). APPC is a
protocol that allows user-written programs on different systems to communicate with
one another. Real APPC is implemented through the Systems Network Architecture
(SNA) logical unit (LU) 6.2 protocol. DC/UCF uses the VTAMLU line type to
support real APPC.

CA-IDMS support for APPC: Within the CA-IDMS environment, APPC is
supported through two languages:

■ Assembler, using the #TREQ DML statement

 ■ CA-ADS

You can use real APPC for communications between the following programs:

■ CA-ADS to CA-ADS programs on the mainframe

■ DC to DC programs

■ DC to CICS programs

■ DC to IBM System 36 or System 38

■ DC to any LU 6.2 physical unit

■ DC to PC programs

�� For information about APPC communications using Assembler, see the #TREQ
statement in CA-IDMS DML Reference - Assembler.

For information about APPC communications in CA-ADS, see CA-ADS Reference
Guide.

Emulated APPC: CA-IDMS supplies emulation software for the PC that allows
CA-ADS dialogs executing on a PC with a 3270 emulator card to emulate APPC.
DC/UCF supports emulated APPC through the LAPPCEMU line type.

In a BS2000/OSD environment, the real LU6.2 protocol is not yet supported by
TRANSDATA. Therefore, CA-IDMS also supplies emulated software that allows an
application running on one DC/UCF system to communicate with another application
running on another DC/UCF system. The two applications may be two CA-ADS
dialogs or two Assembler programs. The two DC/UCF systems may also reside on
different processors. This APPC emulation is supported through the LAPPCEMU line
type, using a transport medium composed of two DCAM lines connected together.

�� For more information on the Siemens emulated LU6.2 software, see CA-IDMS
Usage Under BS2000/OSD.

4-40 CA-IDMS System Operations

4.2 Advanced-program-to-program communications

For more information on PC-to-mainframe communications using APPC in the
CA-IDMS environment, see CA-IDMS System Generation.

 4.2.1 Real APPC

To provide support for real APPC in a DC/UCF system:

■ Add the appropriate physical and logical terminal definitions to the VTAMLU line
definition in the DC/UCF system definition

■ Have your VTAM system programmer code a VTAM mode table entry to define
the SNA protocols (that is, the bind parameters) to be used for sessions with other
type 6.2 logical units

�� For complete syntax for the LINE, PTERM, and LTERM statements used to define
SNA logical units in a DC/UCF system, see the discussion of VTAMLU device
definition in CA-IDMS System Generation.

For more information on VTAM mode table entries for SNA logical units, see
CA-IDMS System Generation.

PTERM statement: The PTERM statement used to define a physical terminal for
real APPC must specify:

TYPE IS LU

 NOACQUIRE (default)

NAME IS vtam-node-name

INFMH IS NO (default)

OUTFMH IS NO (default)

CONTENTION IS WINNER

 NOHOLD (default)

LIMIT ON INPUT IS 0 (default)

MODEENT IS vtam-modeent-name

 NORELEASE (default)

SYNCLEVEL IS OFF (default)

In the parameters listed above:

■ Vtam-node-name must match the name of a VTAM minor node (logical unit)
specified in the VTAM definition

■ Vtam-modeent-name must match the name specified in the LOGMODE parameter
of the VTAM mode table entry for the SNA logical unit used for APPC

Chapter 4. Distributed Applications Using UCF or APPC 4-41

4.2 Advanced-program-to-program communications

VTAM mode table entry: The VTAM mode table entry for the logical unit used
for APPC must specify:

 LOGMODE=vtam-modeent-name

 TYPE=0

 PSNDPAC=X'03'

 SSNDPAC=X'03'

 SRCVPAC=X'03'

 FMPROF=X'13'

 TSPROF=X'07'

 PRIPROT=X'B0'

 SECPROT=X'B0'

 COMPROT=X'50B1'

 RUSIZE=X'8585'

 PSERVIC=X'060200000000000000102F00'

In the parameters listed above, vtam-modeent-name must match the name specified in
the MODEENT parameter of a PTERM statement used to define a physical terminal
for APPC.

Sample system generation statements: The following DC/UCF system
generation statements define two terminals to be used for real APPC:

ADD LINE SNALU1

TYPE IS VTAMLU

APPLICATION IDENTIFICATION IS IDMSSNA

 ENABLED.

ADD PTERM LU��1

TYPE IS LU

NAME IS LU62���1

CONTENTION IS WINNER

MODEENT IS SNAAPPC1

 ENABLED.

ADD LTERM LU��1

 ENABLED.

ADD PTERM LU��2

TYPE IS LU

NAME IS LU62���1

CONTENTION IS WINNER

MODEENT IS SNAAPPC1

 ENABLED.

ADD LTERM LU��2

 ENABLED.

4-42 CA-IDMS System Operations

4.2 Advanced-program-to-program communications

Sample VTAM mode table entry: The following VTAM mode table entry defines
the bind parameters for APPC:

MODEENT LOGMODE=SNAAPPC1, -

 TYPE=�, -

 PSNDPAC=X'�3', -

 SSNDPAC=X'�3', -

 SRCVPAC=X'�3', -

 FMPROF=X'13', -

 TSPROF=X'�7', -

 PRIPROT=X'B�', -

 SECPROT=X'B�', -

 COMPROT=X'5�B1', -

 RUSIZE=X'8585', -

 PSERVIC=X'�6�2��������������1�2F��'

 4.2.2 Emulated APPC

To provide support for emulated APPC in a DC/UCF system, add the appropriate line,
physical terminal, logical terminal, program, and task definitions to the DC/UCF
system definition.

�� For complete LINE, PTERM, and LTERM statement syntax, see CA-IDMS System
Generation.

For complete PROGRAM and TASK statement syntax, see CA-IDMS System
Generation.

LINE statement: The LAPPCEMU line type provides emulated APPC support.
You should define only one such line in a DC/UCF system.

Device-specific syntax for the LAPPCEMU line type is shown below:

��─── TYPe ─┬─ is ─┬─ LAPPCEMU ───��

└─ = ──┘

PTERM statement: The physical terminal associated the LAPPCEMU line type
must be defined as type PAPPCEMU. You should associate only one physical
terminal with an LAPPCEMU line.

Device-specific syntax for the PAPPCEMU physical terminal type is shown below:

��─── TYPe ─┬─ is ─┬─ PAPPCEMU ───��

└─ = ──┘

LTERM statement: The LTERM statement used to define the logical terminal
associated with a PAPPCEMU physical terminal must specify UPLOW.

Sample line and terminal definitions: The following DC/UCF system generation
statements define a line and associated physical terminal/logical terminal pair to
support emulated APPC:

Chapter 4. Distributed Applications Using UCF or APPC 4-43

4.2 Advanced-program-to-program communications

ADD LINE APPCLIN

TYPE IS LAPPCEMU

 ENABLED.

ADD PTERM APPCPTE

TYPE IS PAPPCEMU

 ENABLED.

ADD LTERM APPCLTE

 UPLOW

 ENABLED.

PROGRAM and TASK statements: Include the following PROGRAM and TASK
statements in the DC/UCF system definition to define the APPC emulation startup
program and task:

PROGRAM RHDCEM62

LANGUAGE IS ASSEMBLER

 NOPROTECT

 REENTRANT.

TASK EM62

 INPUT

INVOKES PROGRAM RHDCEM62.

These statements are included in the data dictionary module ADS-PLUS-DRIVER
along with other PROGRAM and TASK statements that support the CA-ADS for the
PC-DOS Environment IDD download facility.

�� For more information on the ADS-PLUS-DRIVER module, see CA-IDMS System
Generation.

4-44 CA-IDMS System Operations

 Chapter 5. UCF Operations

5.1 Overview . 5-3
5.2 UCF front-end . 5-5

5.2.1 Front-end table . 5-7
5.2.1.1 #UCFUFT macro . 5-8
5.2.1.2 #UCFUTD macro . 5-9
5.2.1.3 #UCFDEND macro . 5-12
5.2.1.4 Sample front-end table definition 5-12
5.2.1.5 Front-end table JCL . 5-12

5.2.2 Batch front-end . 5-14
5.2.2.1 Front-end load module assembly JCL 5-16
5.2.2.2 Batch front-end execution . 5-19
5.2.2.3 Batch front-end execution JCL 5-19
5.2.2.4 Setting options for batch UCF program execution 5-21

5.2.3 CICS front-end . 5-22
5.2.3.1 CICS front-end JCL . 5-26
5.2.3.2 CICS front-end execution . 5-29

5.2.4 CICS abort session program . 5-30
5.2.4.1 #UCFCICZ macro . 5-30
5.2.4.2 How to use the UCF CICS abort session program 5-31

5.2.5 VM/ESA front-end . 5-34
5.2.6 DC front-end . 5-37

5.2.6.1 Assembly JCL . 5-38
5.2.6.2 DC front-end execution . 5-41

5.2.7 IMS-DC front-end . 5-42
5.2.7.1 Assembly JCL . 5-43
5.2.7.2 IMS-DC front-end execution . 5-44

5.2.8 TIAM front-end . 5-45
5.2.9 TSO front-end . 5-47
5.2.10 UTM front-end . 5-50

5.2.10.1 Assembly JCL . 5-53
5.2.10.2 Load module JCL . 5-55
5.2.10.3 UTM front-end execution . 5-55

5.3 UCF back-end . 5-57
5.3.1 #FESTDEF macro . 5-57
5.3.2 #FESTENT macro . 5-58
5.3.3 Sample system table definition . 5-59
5.3.4 System table JCL . 5-59

5.4 UCF system generation statements . 5-63
5.5 Printer support . 5-64

5.5.1 Batch printer support . 5-65
5.5.1.1 Assembly JCL . 5-65
5.5.1.2 Batch program execution . 5-68

5.5.2 Printer support for IMS-DC . 5-72
5.5.2.1 Main task assembly JCL . 5-72
5.5.2.2 Subtask assembly JCL . 5-73
5.5.2.3 Executing the printer front-end 5-74

5.5.3 Printer support for DC and CICS . 5-74

Chapter 5. UCF Operations 5-1

5.5.3.1 Defining and starting UCF printer support 5-74
5.5.3.2 Special CICS considerations . 5-75

5-2 CA-IDMS System Operations

5.1 Overview

 5.1 Overview

This chapter describes the procedures for generating a UCF system. UCF enables a
terminal connected to a host TP monitor to execute DC/UCF tasks. For the purposes
of this discussion, a DC/UCF task can be a user task, a task associated with an online
software component, or a system-supplied task.

Typically, UCF is used to:

■ Execute DC/UCF applications and host TP-monitor applications from the same
terminal

■ Execute DC/UCF applications under two or more DC/UCF systems at the same
terminal (for example, in a production and test environment)

■ Share data between an application executing under a DC/UCF system and an
application executing under CICS, IMS-DC, or a different DC/UCF system

TP-monitors supported: UCF supports the following TP monitors and terminal
control facilities: CICS, CMS (VM/ESA), DC, IMS-DC, TIAM, TSO, and UTM.
UCF also provides an interface to enable DC/UCF tasks to execute in batch mode.

UCF architecture: The UCF run-time system consists of a front-end system and a
back-end system:

■ The UCF front-end is the host TP monitor. The front-end program executes as an
application program within the host TP monitor and performs the following
functions:

– Communicates with the UCF terminals connected to it by using standard host
TP-monitor terminal I/O facilities

– Communicates with the back-end system by passing terminal requests to the
back-end and receiving responses using the SVC

■ The UCF back-end is a DC/UCF system that resides in its own region/partition.
The back-end system performs the following functions:

– Receives terminal input from the UCF front-end and directs it to the
appropriate application for processing

– Relays write-to-terminal requests from the application to the UCF front-end,
which performs the write operation

– Handles requests for output to DC printers (printer support only)

Line driver: UCF is a line driver; for each DC/UCF system, there is one UCF line
driver. When a terminal I/O request is issued, DC/UCF directs the request to the UCF
line driver associated with the issuing terminal; the application program need not be
concerned with the type of terminal on which it executes (unless basic mode terminal
I/O is performed). Through UCF, the same DC/UCF program can execute under any
of the host TP monitors supported (for example, CICS) and can communicate with the

Chapter 5. UCF Operations 5-3

5.1 Overview

host system using terminals with any of the supported access methods (for example,
BTAM, TCAM, or VTAM).

Note: Sites with UCF and not DC can access terminals through the UCF line only.
Sites with DC can access terminals through any supported access method,
including UCF.

The figure below illustrates UCF operations. In this figure, the host TP monitor
application database exists optionally. The DC terminals are available only to sites
having DC; sites with UCF are permitted access through the UCF front-end terminals
only.

UCF security: When the UCF front-end connects to the DC back-end, it
automatically signs on to the DC back-end using the user ID supplied by the UCF
front-end terminal. Therefore, you should define to user to the DC back-end system
using the ID and password assigned on the UCF front-end system.

The remainder of this chapter presents procedures for creating UCF front-end and
back-end systems and summarizes the DC/UCF system generation statements that must
be included in the back-end system definition.

5-4 CA-IDMS System Operations

5.2 UCF front-end

 5.2 UCF front-end

The UCF front-end system executes in the host TP-monitor region/partition and
communicates with terminals through host TP-monitor I/O facilities. The front-end
communicates with the back-end system through the external request-unit service
(ERUS) facility.

UCF front-end systems can execute in dedicated or intermittent mode.

Dedicated mode: In dedicated mode, tasks execute as DC/UCF tasks and are
invoked by the terminal operator in response to the ENTER NEXT TASK CODE
prompt. While in dedicated mode, the terminal operator can execute DC/UCF tasks
only; host TP-monitor tasks cannot be executed until dedicated mode is terminated.

To invoke dedicated mode, the terminal operator first enters the dedicated task code
(or transaction id or verb, depending on the host TP monitor in use). This task code
must be defined in the NTID parameter of the #UCFUFT macro (described in 5.2.1,
“Front-end table” on page 5-7) as well as to the host TP monitor. Typically, only one
dedicated task code exists (for example, DBDC). The terminal operator then signs on
to the DC/UCF system.

To terminate dedicated mode and return to the host TP-monitor environment, the
terminal operator enters the task code BYE or SUSPEND:

■ BYE terminates dedicated mode and disconnects the front-end terminal from the
UCF back-end. This action frees all resources held by the back-end for the
terminal (for example, logical and physical terminal elements, signon element).
The next time the terminal operator invokes dedicated mode, the DC/UCF signon
must be performed.

■ SUSPEND terminates dedicated mode but does not disconnect the front-end
terminal from the UCF back-end; all resources held by the back-end for the
terminal are preserved. The terminal operator can invoke dedicated mode later in
the session and execute DC/UCF tasks without signing on again.

Intermittent mode: In intermittent mode, tasks execute as host TP-monitor tasks
and are invoked by the terminal operator in response to the host TP monitor's
equivalent of the ENTER NEXT TASK CODE prompt; DC/UCF is transparent.
DC/UCF tasks that are to be executed in intermittent mode must be defined to the host
TP monitor and to the DC/UCF system with an intermittent task code. Any number of
intermittent task codes can exist (for example, ADSG, DCMT, IDD, OLM).

When a DC/UCF task terminates on the back-end, the action taken depends on
whether a back-end pseudo-converse exists and on the SUSPEND/DISCONNECT
options in effect.

A back-end pseudo-conversation exists if the terminating task specifies a NEXT TASK
CODE or an autotask is defined for the terminal. If a pseudo-conversation exists, the
next task is invoked in the normal manner (similar to dedicated mode).

Chapter 5. UCF Operations 5-5

5.2 UCF front-end

If the terminating task does not specify a NEXT TASK CODE and no terminal
autotask is defined, control is returned to the front-end TP-monitor. The ENTER
NEXT TASK CODE prompt is never written when running in intermittent mode.

By default, the DC/UCF system issues the equivalent of a SUSPEND when ENTER
NEXT TASK CODE would have been written. The front-end terminal is not
disconnected from the UCF back-end; all resources held by the back-end for the
terminal are preserved. The terminal operator can invoke dedicated mode or
intermittent mode again later in the TP-monitor session and execute DC/UCF tasks
without signing on again.

Alternatively, the system can be directed to disconnect the terminal when the ENTER
NEXT TASK CODE would have been written. If this option is desired, both of the
following actions must be taken:

■ Compile and link the DC/UCF options module RHDCOPTF specifying
#DEFOPTF OPT00020.

■ Compile and link the UCFCICS front-end module specifying #UCFCICS
DISC=YES.

When this option is chosen, the DC/UCF system issues the equivalent of a BYE
command when ENTER NEXT TASK CODE would have been written. The front-end
terminal is disconnected from the UCF back-end. This action frees all resources held
by the back-end for the terminal, for example, logical and physical terminal elements
and signon element. The next time the terminal operator invokes a UCF task, a new
DC/UCF signon is performed.

Note: The UCF batch, VM/ESA, TIAM, and TSO front-ends can execute in
dedicated mode only.

UCF front-end components: The UCF front-end system consists of:

■ The UCF front-end common module (RHDCUCFC) contains code common to all
TP monitors and is distributed in object form with the UCF system.

■ The appropriate TP-monitor interface module is distributed in macro form with the
UCF system and must be assembled at your site.

■ The front-end module contains TP-monitor-dependent procedures. The front-end
module is created by assembling a macro appropriate to the TP monitor in use.

■ The front-end table defines the characteristics of the front-end system's terminals
and supplies an identifier for the front-end system. The front-end table is created
by assembling a series of macros.

The procedures for creating the front-end table and for defining and using each
front-end module are presented separately below.

5-6 CA-IDMS System Operations

5.2 UCF front-end

 5.2.1 Front-end table

The front-end table defines global characteristics of a UCF front-end, including
characteristics of the front-end's terminals. One front-end table must be created for
each UCF front-end to be used, with the exception of the batch, VM/ESA, TIAM, and
TSO front-ends.

To create a UCF front-end table, assemble and link edit the following macros:

■ #UCFUFT supplies the global characteristics for the front-end system (for
example, system identifier).

■ #UCFUTD identifies each terminal associated with the front-end system.

■ #UCFDEND ends the front-end table definition.

Front-end system and terminal identifiers: Each UCF front-end table contains
an entry that identifies the front-end system and, optionally, an entry that identifies
each terminal associated with the front-end system.

System identifiers: Each front-end in a UCF system has an identifier that identifies
to the DC/UCF system the TP monitor on which the front-end system task is
executing. The system identifier (FESID) is used by the UCF back-end to determine if
a front-end is authorized to access the back-end. DCMT functions use the FESID to
display and vary information associated with a front-end.

When a host TP monitor (front-end) signs on to a DC/UCF system (back-end) through
UCF, the front-end system passes the system identifier to DC/UCF. Before accepting
the UCF signon, the DC/UCF system attempts to locate the identifier in its system
table. If the identifier passed with the signon is not in the system table, the signon is
rejected. See 5.3, “UCF back-end” on page 5-57 for a discussion of the UCF system
table.

Usually, the system identifier is specified in the front-end table with the #UCFUFT
macro. However, because the batch, VM/ESA, TIAM, and TSO front-ends have
built-in front-end tables, the system identifier for these interfaces must be specified in
the TP-monitor-dependent macro.

Terminal identifiers: Each terminal owned by a host TP monitor has a unique
identifier. At run time, the front-end task automatically passes the terminal identifier
(FETID) to the DC/UCF system. The DC/UCF system uses the identifier with DCMT
functions to display and vary information associated with that terminal.

The terminal identifier can be coded in the #UCFUTD macro for the terminal and/or in
the PTERM statement for the terminal in the back-end system definition. At run time,
a terminal with no entry in the UCF front-end table (that is, one for which no
identifier was coded in the #UCFUTD macro) is assigned, by default, the
characteristics of the prototype front-end terminal of the same type. If a prototype has
not been defined for that terminal type, the terminal identifier must exist in the
front-end table in order for a terminal to access UCF. Typically, you define prototypes

Chapter 5. UCF Operations 5-7

5.2 UCF front-end

for 3270- and TTY-type terminals; however, terminal identifiers must be supplied in
the #UCFUTD macro for 3280-type terminals (printers).

The three macros used to create the UCF front-end table are described below, followed
by an example of a front-end table, and the front-end table JCL for OS/390, VSE/ESA,
VM/ESA, and BS2000/OSD.

 5.2.1.1 #UCFUFT macro

The #UCFUFT macro defines global front-end characteristics. One #UCFUFT macro
is required for each front-end table. #UCFUFT must be the first macro in the source
file and must be labeled.

 Syntax

��─── label #UCFUFT ──�

 �─┬────────────────────────┬───�

└─ MODE = ─┬─ CONV ────┬─┘

└─ PCONV ← ─┘

 �─┬─────────────────────┬──�

└─ ,ENV = ─┬─ IBM ← ─┬┘

└─ SMN ───┘

 �─┬───────────────────────────────┬──�

└─ ,NTID = dedicated-task-code ─┘

 �─┬───────────────────────────┬──�

└─ ,PTID = print-task-code ─┘

 �─── , ─┬─ SYSTEM ──┬─ = front-end-system-id ────────────────────────────────��

└─ UCFSYST ─┘

 Parameters

MODE=CONV/PCONV
(DC front-ends only) Specifies whether the front-end is to run in conversational or
pseudo-conversational mode:

■ CONV — The front-end runs in conversational mode.

■ PCONV (default) — The front-end runs in pseudo-conversational mode. If
MODE=PCONV is specified, the NTID parameter (described above) must
also be specified.

The MODE specification can be overridden for selected terminals with the
#UCFUTD macro (described on the following pages).

ENV=
Defines the operating system environment. IBM is the default. For BS2000/OSD
systems, you must code ENV=SMN.

5-8 CA-IDMS System Operations

5.2 UCF front-end

NTID=
Specifies the one- through eight-character task code used to invoke the front-end
in dedicated mode. Dedicated-task-code must match the task code specified in the
host TP-monitor system definition. This parameter must be specified if
MODE=PCONV (described below) is specified.

PTID
(CICS and DC front-ends only) Specifies the one- through eight-character task
code used to invoke the UCF Print Control Task. Print-task-code must match the
task code specified in the CICS or DC system definition.

SYSTEM/UCFSYST
Specifies the one- through eight-character identifier for the front-end system
(FESID). Front-end-system-id must be defined in the back-end system table and
typically is one of the following: CICS, DC, IMS-DC, TSO or UTM.

For OS/390, VSE/ESA, and VM/ESA systems, the parameter keyword is
SYSTEM. For BS2000/OSD systems, the parameter keyword is UCFSYST.

 5.2.1.2 #UCFUTD macro

The #UCFUTD macro defines terminal-specific characteristics. One #UCFUTD macro
is required for each terminal associated with this front-end if no prototype terminals
are to be defined. If prototypes are to be defined, one #UCFUTD macro must be
coded for each type of terminal (that is, 3270 and TTY) to be used with the UCF
front-end. Typically, only one prototype TTY terminal and one prototype terminal for
each 3270-type model present need be defined. #UCFUTD macros must be unlabeled.

 Syntax

Chapter 5. UCF Operations 5-9

5.2 UCF front-end

��─── #UCFUTD ──�

 �─┬────────────────────────┬───�

└─ BUFSIZ = buffer-size ─┘

 �─┬────────────────────────┬───�

└─ ,FORMFD = ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬───────────────────────┬──�

└─ ,MODE = ─┬─ CONV ──┬─┘

└─ PCONV ─┘

 �─┬───────────────────────────────┬──�

└─ ,MODEL = ─┬─ 2 ← ──────────┬─┘

└─ model-number ─┘

 �─┬───────────────────────────────┬──�

└─ ,NCHARS = ─┬─ 8� ← ────────┬─┘

└─ line-length ─┘

 �─┬───────────────────────────────┬──�

└─ ,NLINES = ─┬─ 24 ← ────────┬─┘

└─ page-length ─┘

 �─┬─────────────────────────────────┬──�

└─ ,PRTCLS = ─┬─ 1 ← ───────────┬─┘

└─ printer-class ─┘

 �─┬─────────────────────┬──�

└─ ,SCS = ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬─────────────────────────────────┬──�

└─ ,TERM = front-end-terminal-id ─┘

 �─┬─────────────────────────┬──��

└─ ,TYPE = ─┬─┬─ CRT ─┬─┬─┘

│ └─ TTY ─┘ │

├─ T3277 ← ─┤

├─ T3279 ───┤

└─ T328� ───┘

 Parameters

TERM=
Specifies the unique identifier for the front-end terminal. Except when defining a
3280-type printer, this parameter is typically omitted and, therefore, defines a
prototype terminal. Front-end-terminal-id is a one- through eight-character
alphanumeric value and must match the terminal identifier specified in the host
TP-monitor system definition. This parameter is required if TYPE=T3280 is
specified.

5-10 CA-IDMS System Operations

5.2 UCF front-end

TYPE=
Specifies the front-end terminal type:

■ CRT/TTY — The front-end terminal is a TTY-type terminal. TTY applies to
all asynchronous ASCII terminals.

■ T3277 (default) — The front-end terminal is a 3270-type terminal.

■ T3279 — The front-end terminal is a 3279-type color terminal with extended
color support.

■ T3280 — The front-end terminal is a 3280-type terminal. If T3280 is
specified, the TERM= parameter (described above) must also be specified.

MODE=CONV/PCONV
(DC front-ends only) Specifies whether this terminal executes in conversational or
pseudo-conversational mode:

■ CONV — The terminal executes in conversational mode.

■ PCONV — The terminal executes in pseudo-conversational mode.

The MODE= parameter defaults to the MODE specification in the #UCFUFT
macro.

MODE=
(TYPE T3277 only) Specifies the 3270-type terminal model code. Model-number
is an integer in the range 1 through 5; the default is 2.

NCHARS=
Specifies the terminal's line length. Line-length is an integer in the range 1
through 32767; the default is 80 characters.

NLINES=
Specifies the terminal's page length. Page-length is an integer in the range 1
through 32767; the default is 24 lines. If TYPE=TTY is specified, a page length
of 3 is recommended.

BUFSIZ=
Specifies the size, in bytes, of the I/O buffer allocated to the terminal. Buffer-size
can be any positive integer. The value specified must be greater than or equal to
the size of the longest data stream to be transferred between the DC/UCF system
and the UCF front-end system. Typically, the default value (equal to the product
of 1.5 times the NCHARS value times the NLINES value plus 800) is used.

FORMFD=YES/NO
(CICS, and DC front-ends only) Specifies whether the printer front-end terminal
has formfeed capabilities:

■ YES — The terminal has formfeed capabilities.

■ NO (default) — The terminal does not have formfeed capabilities.

PRTCLS=
(CICS front-end only) Specifies a print class for WRITE TO PRINTER requests
issued from the terminal. Print-class is an integer in the range 1 through 64; the
default is 1. This parameter is ignored if the terminal itself is a printer.

Chapter 5. UCF Operations 5-11

5.2 UCF front-end

SCS IS NO/YES
Specifies whether the printer is an SNA character string device, also known as a
type 1 logical unit:

■ NO (default) indicates that the printer is not an SNA character string device.

■ YES indicates that the printer is an SNA character string device.

 5.2.1.3 #UCFDEND macro

The #UCFDEND macro specifies the end of the front-end table definition. One
#UCFDEND macro must be coded for each front-end table. #UCFDEND must follow
the last #UCFUTD macro and must be unlabeled.

 Syntax

��─── #UCFDEND ───�

 �──┬──────────────────┬──��

└─ XA= ─┬─ YES ──┬─┘

└─ NO ← ─┘

 Parameters

XA
Determines whether the front-end table has the capability to reside above the
16-megabyte line. The default, NO, indicates it does not have the capability; YES
indicates it does.

5.2.1.4 Sample front-end table definition

The following macro statements define a sample CICS front-end system, consisting of
a prototype TTY-type terminal and five 3270-type terminals:

UCFFET #UCFUFT SYSTEM=CICS,NTID=DBDC

 #UCFUTD TYPE=TTY,NCHARS=8�,NLINES=2

 #UCFUTD TYPE=T3277,NCHARS=4�,NLINES=12,MODEL=1

 #UCFUTD TYPE=T3277,NCHARS=8�,NLINES=24,MODEL=2

 #UCFUTD TYPE=T3277,NCHARS=8�,NLINES=32,MODEL=3

 #UCFUTD TYPE=T3277,NCHARS=8�,NLINES=43,MODEL=4

 #UCFUTD TYPE=T3277,NCHARS=132,NLINES=27,MODEL=5

 #UCFDEND

5.2.1.5 Front-end table JCL

The JCL used to create the UCF front-end table is shown below for OS/390,
VSE/ESA, VM/ESA and BS2000/OSD.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

5-12 CA-IDMS System Operations

5.2 UCF front-end

OS/390 Front-end table assembly

// EXEC ASMA9�

//SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

//SYSIN DD �

front-end table macro statements

 END

//LKED.SYSLMOD DD DSN=idms.loadlib(ucffet),DISP=SHR

VSE/ESA Front-end table assembly

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

ucffet name of the UCF front-end table load module

// DLBL idmslib

// EXTENT ,nnnnnn

// LIBDEF �,SEARCH=idmslib.sublib

// DLBL IJSYSPH,'WRK1WORK',�

// EXTENT SYSPCH,wrkvol,,,ssss,llll

 ASSIGN SYSPCH,DISK=VOL=wrkvol,SHR

// OPTION DECK

// EXEC ASMA9�,SIZE=128K

PUNCH 'CATALOG ucffet.A R=YES'

front-end table macro statements

 END

/�

 CLOSE SYSPCH,PUNCH

// DLBL IJSYSIN,'WRK1WORK'

// EXTENT SYSIPT,wrkvol

 ASSIGN SYSIPT,DISK,VOL=wrkvol,SHR

// EXEC LIBR,PARM='A S=idmslib.sublib'

 CLOSE SYSIPT,READER

/�

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

llll number of tracks (CKD) or block (FBA) of the disk
extent

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

ucffet phase name of the relocatable UCF front-end table
module

wrkvol volume for work files

Chapter 5. UCF Operations 5-13

5.2 UCF front-end

VM/ESA Front-end table assembly

GLOBAL MACLIB idmslib

FILEDEF TEXT DISK ucffet TEXT A

ASSEMBLE fetmacs

BS2000/OSD Front-end table assembly

fetmacs filename of the file containing the front-end table
macro statements

idmslib filename of the CA-IDMS MACLIB library

ucffet filename of the assembled UCF front-end table

/ADD-FILE-LINK ALTLIB,F-NAME=idms.maclib

/START-ASSEMBH

//COMPILE SOURCE=srcfile -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=idms.dba.loadlib(ELEM=ucffet) -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

//END

/REM-FILE-LINK ALTLIB

idms.maclib filename of the CA-IDMS macro library

idms.loadlib filename of the CA-IDMS load library

srcfile filename of the file containing the front-end macro
statements

idms.dba.loadlib filename of the CA-IDMS load library containing the
DMCL and database name table load modules

ucffet name of the UCF front-end load module

 5.2.2 Batch front-end

The UCF batch front-end enables the execution of DC/UCF tasks from a batch job.

To create the batch front-end module, assemble a #UCFBTCH macro and link edit the
resulting object module with RHDCUCFC, IDMS and IDMSOPTI (optional). The
batch front-end supports dedicated mode only and requires no front-end table
definition.

5-14 CA-IDMS System Operations

5.2 UCF front-end

IDMSOPTI: The IDMSOPTI module identifies the back-end system with which the
front-end communicates. The module is created by assembling an IDMSOPTI macro.
If you omit IDMSOPTI from the link edit of the front-end system, the execution JCL
for the front-end must include a SYSCTL file that identifies the back-end system.

��For more information on IDMSOPTI, see Chapter 3, “Setting Up Interpartition
Communication and the SVC.”

Syntax for the #UCFBTCH macro is shown below. The macro must be labeled; the
label provides the module's entry point name.

 Syntax

��─── label #UCFBTCH ───�

 �─┬───────────────────┬──�

└─ OS = ─┬─ OS ← ─┬─┘

├─ DOS ──┤

└─ BS2K ─┘

 �─┬───────────────────────┬──�

└─ ,PRINT = ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬───────────────────────┬──�

└─ ,RETCD = ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬───┬────────────────────────��

└─ , ─┬─ SYSTEM ──┬─ = ─┬─ BATCH ← ─────────────┬─┘

└─ UCFSYST ─┘ └─ front-end-system-id ─┘

 Parameters

OS=
Specifies the operating system under which the batch front-end system executes.
OS applies to all supported OS/390 and VM/ESA operating systems. DOS applies
to all supported VSE/ESA operating systems. BS2K refers to all supported
BS2000/OSD operating systems. The default is OS.

PRINT=YES/NO
Specifies whether reports queued to DC printers can be printed using UCF batch
printer support. NO, the default, indicates that the system creates the batch
front-end load module; printer support is not generated. YES directs the system to
create a UCF print support module. UCF print support is discussed later under
5.2.1, “Front-end table” on page 5-7.

RETCD=YES/NO
If the CA-IDMS system is shut down while a UCFBATCH job is running, the
UCFBATCH job ends with a return code of 4 or 12. If RETCD=YES is
specified, UCFBATCH jobs continue to run as they currently do and will receive
the non-zero return code. If RETCD=NO is specified, UCFBATCH jobs will not
receive the return code of 4 or 12.

Chapter 5. UCF Operations 5-15

5.2 UCF front-end

SYSTEM/UCFSYST=
Specifies the 1- through 8-character front-end system identifier.
Front-end-system-id must match the identifier specified in the FESID parameter
of the #FESTENT macro used to define the batch front end in the UCF system
table; see 5.3.2, “#FESTENT macro” on page 5-58 for further information. The
default of BATCH matches the FESID value for the batch front-end in the system
table supplied with UCF.

For OS/390, VSE/ESA, and VM/ESA systems, the parameter keyword is
SYSTEM. For BS2000/OSD systems, the parameter keyword is UCFSYST.

5.2.2.1 Front-end load module assembly JCL

The JCL used to create the batch front-end load module is shown below for OS/390,
VSE/ESA, VM/ESA and BS2000/OSD operating systems:

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 Batch front-end load module assembly

// EXEC ASMA9�

//SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

//SYSIN DD �

#UCFBTCH macro

 END

//LKED.SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//LKED.IN DD DSN=idms.loadlib,DISP=SHR

//LKED.SYSIN DD �

 INCLUDE IN(IDMSUTIO)

 INCLUDE IN(RHDCUCFC,IDMSOPTI,IDMS)

 ENTRY IDMSENTR

 NAME ucfbtch(R)

/�

VSE/ESA Batch front-end load module assembly

idms.loadlib data set name of the CA-IDMS load library

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

ucfbtch name of the batch front-end load module

5-16 CA-IDMS System Operations

5.2 UCF front-end

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE ucfbtch,�

// EXEC ASMA9�

#UCFBTCH macro

 END

/�

 INCLUDE IDMSUTIO

 INCLUDE RHDCUCFC

 INCLUDE IDMS

 INCLUDE IDMSOPTI

 ENTRY IDMSENTR

// EXEC LNKEDT

VM/ESA Batch front-end load module assembly

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file-id associated with the file containing CA-IDMS
modules

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

ucfbtch phase name of the batch front-end module

GLOBAL MACLIB idmslib

FILEDEF TEXT DISK ucfbtch TEXT A

ASSEMBLE #ucfbtch

FILEDEF SYSLST PRINTER

FILEDEF SYSLMOD DISK idmslib LOADLIB a2 (RECFM V LRECL 1�24 BLKSIZE 1�24

LKED linkctl

Linkage editor control statements (linkctl):

INCLUDE ucfbtch

INCLUDE IDMSOPTI

INCLUDE IDMS

INCLUDE RHDCUCFC

INCLUDE IDMSUTIO

ENTRY IDMSENTR

NAME ucfbtch(R)

Chapter 5. UCF Operations 5-17

5.2 UCF front-end

BS2000/OSD Front-end load module assembly

idmslib filename of the CA-IDMS MACLIB library

idmslib LOADLIB a2 file ID of the CA-IDMS LOADLIB library

linkctl filename of the file containing the linkage editor control
statements

ucfbtch name of the batch front-end module

ucfbtche label specified for #UCFBTCH

#ucfbtch filename of the file containing the #UCFBTCH macro
statement

/DELETE-SYSTEM-FILE SYSTEM-FILE=�OMF

/ADD-FILE-LINK ALTLIB,F-NAME=idms.maclib

/ASSIGN-SYSDTA TO=�SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=�SYSDTA -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=�OMF -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

 ucfbtche #UCFBTCH macro

 END ucfbtche

//END

/REM-FILE-LINK ALTLIB

/START-BINDER

//START-LLM-CREATION INTERNAL-NAME=ucfbtch

//INC-MOD LIB=�OMF

//INC-MOD LIB=idms.loadlib,ELEM=RHDCUCFC

//INC-MOD LIB=idms.loadlib,ELEM=IDMS

//INC-MOD LIB=idms.loadlib,ELEM=IDMSUTIO

//INC-MOD LIB=idms.dba.loadlib,ELEM=IDMSOPTI

//SAVE-LLM LIB=idms.dba.loadlib,ELEM=ucfbtch (VER=@), -

// OVER=YES,ENTRY-POINT=IDMSENTR

//END

Note: Program RHDCUBAT (#UCFBTCH with option PRINT=NO) is link edited
during system installation. To relink this module, you need link member
LNK1UBAT.

idms.maclib filename of the CA-IDMS macro library

idms.loadlib filename of the CA-IDMS load library

ucfbtch name of the batch front-end module

ucfbtche arbitrary label

idms.dba.loadlib filename of the CA-IDMS load library containing the
DMCL and database name table load modules

5-18 CA-IDMS System Operations

5.2 UCF front-end

5.2.2.2 Batch front-end execution

When executed, the batch front-end reads input from SYSIPT. Each statement is
interpreted as terminal input and is passed to the DC/UCF system. The physical
terminal name is used as the terminal identifier. Output from the DC/UCF task is
returned to the front-end, which writes the output to SYSLST. The terminal
disconnect occurs when the BYE task is invoked.

The batch front-end operates in dedicated mode only. You must provide a job card
specifying a user ID and password to execute tasks with a security class other than
zero. Alternatively, you can specify the SIGNON task code in the input:

SIGNON ABC ABCPASS

DCMT DISPLAY ACTIVE TASKS

DCMT DISPLAY ACTIVE PROGRAMS

DCUF SHOW USERS ALL

BYE

5.2.2.3 Batch front-end execution JCL

The JCL used to execute the UCF batch front-end is shown below:

OS/390 Batch front-end execution

// EXEC PGM=ucfbtch

 //STEPLIB DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//SYSUDUMP DD SYSOUT=A

//SYSLST DD SYSOUT=A

 //SYSIDMS DD �

SYSIDMS parameters, as required

//SYSIPT DD �

input statements

/�

VSE/ESA Batch front-end execution

idms.loadlib data set name of the CA-IDMS load library

idms.sysctl data set name of the SYSCTL file

sysctl ddname of the SYSCTL file

ucfbtch name of the batch front-end load module

Chapter 5. UCF Operations 5-19

5.2 UCF front-end

// UPSI b if specified in the IDMSOPTI module

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS,'#SYSIPT',�,SD

// EXEC ucfbtch

input statements

/�

Note: You can define a SYSCTL file in the JCL to override IDMSOPTI
specifications for the back-end system:

// DLBL sysctl,'idms.sysctl',,SD

// EXTENT sys��8,nnnnnn

// ASSGN sys��8,DISK,VOL=nnnnnn,SHR

VM/ESA Batch front-end execution

b appropriate one- through eight-character UPSI bit
switch, as specified in the IDMSOPTI module

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file-id associated with the file containing CA-IDMS
modules

idms.sysctl file-id of the SYSCTL file

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

sysctl filename of the SYSCTL file

sys��8 logical unit assignment of the SYSCTL file

ucfbtch phase name of the batch front-end module

FILEDEF SYSLST PRINTER

FILEDEF SYSIPT DISK ucfbtch input a

FILEDEF SYSIDMS DISK sysidms parms a (RECFM F LRECL lll BLKSIZE bbb

GLOBAL LOADLIB idmslib

OSRUN ucfbtch

Note: You can define a SYSCTL file in the JCL to override IDMSOPTI
specifications for the back-end system:

5-20 CA-IDMS System Operations

5.2 UCF front-end

FILEDEF sysctl DISK sysctl idms a

BS2000/OSD Batch front-end execution

bbb blocksize

idmslib name of the CA-IDMS LOADLIB library

lll logical record length

sysctl ddname of the SYSCTL file

sysctl idms a file ID of the SYSCTL file

sysidms parms a file ID of the SYSIDMS parameter file

ucfbtch name of the batch front-end load module

ucfbtch input a file ID of the file containing the UCF batch input
statements

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSDTA TO=�SYSCMD

/START-PROG �MOD(ELEM=ucfbtch,LIB=idms.dba.loadlib,RUN-MODE=�ADV)

input statements

/REMARK

idms.dba.loadlib filename of the load library containing the DMCL and
database name table load modules

idms.loadlib filename of the CA-IDMS load library

idms.sysctl filename of the SYSCTL file

idms.sysidms filename of the SYSIDMS parameters file

sysctl linkname of the SYSCTL file

ucfbtch name of the batch front-end load module

5.2.2.4 Setting options for batch UCF program execution

The SET OPTIONS input statement allows users to establish input options during
batch UCF program execution. The words SET OPTIONS must start in column 1 and
must be followed by a blank. Each of the following options is specified in a separate
SET OPTIONS statement:

■ INPUT start-column THRU end-column specifies the start and end columns of the
input column range. The batch front-end program treats data within the specified

Chapter 5. UCF Operations 5-21

5.2 UCF front-end

columns as input and ignores any other data on the line. The default range is 1
through 80. Typically, this parameter is used to limit the input column range to
columns 1 through 72.

■ ECHO/NOECHO specifies whether subsequent input statements are written to
SYSLST:

– ECHO (default) specifies that input statements are written to SYSLST.

– NOECHO specifies that input statements are not written to SYSLST.

Note: SET OPTIONS statements are always echoed, regardless of the input options
that have been established.

Example SET OPTIONS statements: In the following example, SET OPTIONS
statements limit input columns to 1 through 72 and request the program not to echo
the user's password:

//UCFBTCH EXEC PGM=UCFBTCH

 //STEPLIB DD DSN=DBDC.LOADLIB,DISP=SHR

//SYSCTL DD DSN=SYS1.IDMS.SYSCTL,DISP=SHR

//SYSLST DD SYSOUT=A

//SYSUDUMP DD SYSOUT=A

//SYSIPT DD �

SET OPTIONS INPUT 1 THRU 72

SIGNON HARPO

SET OPTIONS NOECHO

SWORDFISH

SET OPTIONS ECHO

DCMT DISPLAY ACTIVE STORAGE 5

DCMT DISPLAY LINES

BYE

 5.2.3 CICS front-end

The UCF CICS front-end enables DC/UCF tasks to be executed from a terminal
connected to CICS.

To create the CICS front-end module, assemble a #UCFCICS macro and link edit the
resulting object module with RHDCUCFC, IDMSCINT, and the CICS front-end table.

Note: UCF requires the presence of the IDMS=NTC interface module in the CICS
region/partition. For instructions on assembling and link editing IDMSINTC,
see Chapter 6, “TP-Monitor Considerations.”

The macro must be labeled; the label provides the module's entry point name.

 Syntax

��─── label #UCFCICS ───�

5-22 CA-IDMS System Operations

5.2 UCF front-end

 �─┬──────────────────────┬───�

└─ COLOR = ─┬─ YES ──┬─┘

├─ NO ← ─┤

└─ ONLY ─┘

 �─┬──────────────────────┬───�

└─ DBCS = ──┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬──────────────────────┬───�

└─,DEBUG = ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬─────────────────────┬──�

└─,DISC = ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬────────────────────────────────────┬─────────────────────────────────────�

└─ ,ERRDCT = ─┬─ destination-name ─┬─┘

└─ CSMT ← ───────────┘

 �─┬────────────────────────────┬───�

└─,LASTOUT = ─┬─ TASKEND ───┬┘

└─ RESETKB ← ─┘

 �─┬────────────────────┬───�

└─ ,OS = ─┬─ OS ← ─┬─┘

└─ DOS ──┘

 �─┬────────────────────────────────┬───�

└─,PRINT = ─┬─ print-option ───┬─┘

└─ OFF ← ──────────┘

 �─┬─────────────────────┬──�

└─ ,RDW = ─┬─ YES ──┬┘

└─ NO ← ──┘

 �─┬──────────────────────────┬───�

└─ ,READBUF = ─┬─ YES ← ─┬─┘

└─ NO ────┘

 �─┬─────────────────────────┬──�

└─ ,RECVRTS = ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬────────────────────────────┬───�

└─,RESETKB = ─┬── TASKEND ──┬┘

└─ ASIS ← ────┘

Chapter 5. UCF Operations 5-23

5.2 UCF front-end

 �─┬─────────────────────────┬──�

└─,SUFFIX = ──── suffix ──┘

 �─┬─────────────────────────┬──�

└─ ,UCTRAN = ─┬─ TCT ──┬─┘

└─ NO ← ─┘

 �─┬─────────────────────────┬──��

└─ ,USERCHK = ─┬─ YES ──┬─┘

└─ NO ← ─┘

 Parameters

COLOR=YES/NO/ONLY
Specifies whether the front-end is to check to see if the terminal is a 3279-type
terminal with extended color support. If YES is specified, DC/UCF treats the
terminal as a 3279 terminal if CICS reports positive settings for either the COLOR
or EXTDS attributes. If ONLY is specified , DC/UCF treats the terminal as a
3279 terminal only if CICS reports a positive setting for the COLOR attribute.
The default is NO.

DBCS=YES/NO
Specifies whether the terminal supports double-byte characters. If YES is
specified, terminals that support COLOR or extended data streams are assumed to
also have Double Byte Character Support. COLOR=YES must be specified for
DBCS=YES to take effect.

DEBUG=YES/NO
Specifies whether EXEC CICS ENTER TRACEID commands is issued at various
processing points during the execution of each UCF transaction. DEBUG=YES is
only used for diagnostic purposes. The default is NO.

DISC=YES/NO
Specifies what action the DC/UCF system is to take at the end of an intermittent
mode pseudo-converse. DISC=YES specifies that all DC/UCF resources are to be
freed. DISC=NO specifies that the DC/UCF terminal should be put in a
SUSPEND state. The default is NO.

Note: If DISC=YES is specified, RHDCOPTF bit 20 must be set in the
corresponding back-end DC system.

ERRDCT=
Identifies the CICS transient data destination to be used as the target for error
messages produced by IDMSINTC and IDMSTRUE. The default destination
name is CSMT. Use another destination if you want to route CA-IDMS error
messages to another CICS destination. The DCT entry should be defined with a
logical record length of at least 130 characters.

LASTOUT=TASKEND/RESETKB
Specifies the action the UCFCICS front-end module takes when issuing WRITE
commands. If LASTOUT=RESETKB, UCFCICS includes the LAST option on
the EXEC CICS SEND command whenever it writes a datastream that includes
the RESET keyboard indicator. If LASTOUT=TASKEND, UCFCICS does not

5-24 CA-IDMS System Operations

5.2 UCF front-end

specify the LAST option when writing datastreams. CICS automatically transmits
an "end-of-bracket" indicator at task end. RESETKB is the default.

OS=OS/DOS
Specifies the operating system under which the CICS front-end system executes.
OS applies to all supported OS/390 versions of CICS. DOS applies to all
supported VSE/ESA versions of CICS. The default is OS.

PRINT=print-option
Specifies what print option the Assembler is to use while processing the COPY
commands which copy in the DSECTs used in the UCF front-end module. Valid
options are ON/GEN/NOGEN. See the documentation for your Assembler
product for details. The default is OFF.

RDW=YES/NO
Specifies whether UCFCICS should pass the RDW as part of the PDAT data
when starting a front-end task in a distributed application as described in section
4.1. The default is NO.

READBUF=YES/NO
Specifies whether the physical terminal can execute a READ BUFFER command;
the default is YES. At bind time, the READBUF specification in the #UCFCICS
macro overrides the READBUFFER/NOREADBUFFER specification established
by the system generation PTERM statement for the physical terminal.

RECVRTS=YES/NO
YES specifies that the CICS system is generated with RECOVERABLE AUX
TEMP storage. This parameter may be needed for UCFPRINT to work properly
on such systems. The default is NO.

RESETKB=TASKEND/ASIS
Specifies whether the UCFCICS front-end module should suppress the RESET
keyboard indicator when writing datastreams. If YES is specified, the RESET
indicator is removed from any datastream written to the terminal. This also
prevents the LAST option from being specified on all EXEC CICS SEND
commands. At task termination, an extra EXEC CICS SEND command is
transmitted specifying zero length, RESET keyboard, and LAST.

IF ASIS is specified, the RESET keyboard indicator is eft as passed by the
application code running in the DC/UCF back-end system. The LAST option is
controlled by the LASTOUT parameter described above. The default is ASIS.

SUFFIX=suffix
Is an obsolete parameter. It is allowed for compatibility.

UCTRAN=TCT/NO
Specifies whether input data is to be translated to uppercase before it is transferred
to the DC/UCF system:

■ TCT — Translation of terminal input is determined by the presence or
absence of the FEATURE=UCTRAN parameter in the TCT definition for the
terminal.

■ NO (default) — Terminal input is not translated to uppercase.

Chapter 5. UCF Operations 5-25

5.2 UCF front-end

USERCHK=YES/NO
Specifies whether UCFCICS is to check the CICS userid at the beginning of each
task in a pseudo-converse. YES prevents an operator who has newly signed on to
a terminal from being connected to another user's back-end UCF terminal session.
This can occur if the first user's session was aborted (for example, by "killing" the
session from a VTAM session manager) and UCFCICZ is not implemented to
clean up the associated UCFCICS storage in the CICS region where the UCFCICS
transaction runs.

YES causes UCFCICS to check the CICS USERID at the beginning of each task
in a pseudo-converse. If the userid does not match the userid saved from the
previous task in that pseudo-converse, a new session is started instead of resuming
the old one. The old session is automatically aborted. The new session continues
normally.

USERCHK=YES is not enforced if no CICS signon is done. For example,
consider the following scenario:

■ User A is on a CICS terminal, but is not signed on to CICS.

■ User A starts a UCF session and his CICS session is aborted while in a
pseudo-converse.

■ User B comes into CICS and gets the same terminal. User B also is not
signed on to CICS.

■ User B invokes UCF and picks up user A's session.

Note that in the above scenario, the old session is aborted if either user A or user
B (or both) is signed on to CICS.

The comparison of the new and saved userid is done after the call to the
USRIDXIT, if that exit exists. The value set by the USRIDXIT is the one that is
saved across a pseudo-converse, so the use of the exit in conjunction with this
APAR should not cause a problem even if the exit modifies the user id used to
connect to the back-end CA-IDMS/UCF system. Also note that the security
function of the USERCHK parameter will not work if the USRIDXIT changes
different CICS user-ids to a common back-end id.

The default is NO.

5.2.3.1 CICS front-end JCL

The JCL used to create the CICS front-end load module is shown below for OS/390
and VSE/ESA operating systems.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 CICS front-end load module assembly

5-26 CA-IDMS System Operations

5.2 UCF front-end

//CICTRNS EXEC PGM=DFHEAP1$,REGION=2�48K

//STEPLIB DD DSN=cics.loadlib,DISP=SHR

//SYSPUNCH DD DSN=&&TEMPMAC(#UCFCICS),

// DISP=(NEW,PASS),UNIT=SYSDA,SPACE=(CYL,(3,,�4),

// DCB=(LRECL=8�,BLKSIZE=312�,RECFM=FB,DSORG=PO)

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT2 DD DSN=&&SYSUT2,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT3 DD DSN=&&SYSUT3,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

�ASM XOPTS(NOPROLOG NOEPILOG NOEDF SP)

// DD DSN=idms.maclib(#UCFCICS),DISP=SHR

// DD �

 END

/�

//�--

//� ASSEMBLER ASMA9� JOB STREAM

//�--

//ASMSTEP EXEC PGM=ASMA9�,

// PARM='LIBMAC,XREF',

// REGION=512K

//SYSLIB DD

// DD DSN=(&&TEMPMAC,DISP=(OLD,DELETE)

// DD DSN=idms.maclib,DISP=SHR

// DD DSN=idms.srclib,DISP=SHR

// DD DSN=cics.maclib,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT2 DD DSN=&&SYSUT2,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT3 DD DSN=&&SYSUT3,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSPRINT DD SYSOUT=�

//SYSPUNCH DD DSN=&&OBJECT,

 DISP=(NEW,PASS),

 UNIT=SYSDA,

 SPACE=(8�,(5��,1���))

//SYSIN DD �

ucfcicse #UCFCICS

 END ucfcicse

//�--

//� LINK IEWL

//�--

//LINK EXEC PGN=IEWL,

// PARM 'LET,LIST,XREF',

// REGION=128K,

// COND=(8,LT,AMSTEP)

//SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,

// SPACE=(64��,(8�)),

// DISP=(NEW,PASS)

//IN1 DD DSN=idms.loadlib,DISP=SHR

//IN2 DD DSN=cics.loadlib,DISP=SHR

//IN3 DD DSN=&&OBJECT,DISP=(OLD,DELETE)

//SYSLIN DD DDNAME=SYSIN

//SYSIN DD �

 INCLUDE IN2(DFHEAI)

 INCLUDE IN3

 INCLUDE IN1(ucffet,RHDCUCFC,IDMSCINT)

 INCLUDE IN2(DFHEAIO)

 MODE AMODE(31),RMODE(24)

Chapter 5. UCF Operations 5-27

5.2 UCF front-end

 ENTRY ucfcicse

 NAME ucfcics(R)

/�

Note: You create the IDMSCINT module by assembling an IDMSINTC macro that
specifies the following parameters:

EXEC=YES,EP1=IDMSINC1

For a description of IDMSCINT, see Chapter 6, “TP-Monitor Considerations.”

VSE/ESA CICS front-end load module assembly

cics.loadlib data set name of the CICS load library

cics.maclib data set name of the CICS macro library

idms.maclib data set name of the CA-IDMS macro library

idms.loadlib data set name of the load library containing CA-IDMS
modules

idms.srclib data set name of the CA-IDMS source library

ucfcics name of the CICS front-end load module

ucfcicse entry point name of the CICS front-end load module;
matches the label specified for #UCFCICS

ucffet name of the CICS front-end table

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib,cics.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE ucfcics,�

 INCLUDE DFHEAI

// EXEC ASMA9�

ucfcicse #UCFCICS

 END

/�

 INCLUDE RHDCUCFC

 INCLUDE IDMSCINT

 INCLUDE ucffet

 INCLUDE DFHEAI�

 ENTRY ucfcicse

// EXEC LNKEDT

Note: You create the IDMSCINT module by assembling an IDMSINTC macro that
specifies the following parameters:

EXEC=YES,EP1=IDMSINC1

5-28 CA-IDMS System Operations

5.2 UCF front-end

See Chapter 6, “TP-Monitor Considerations” for a description of IDMSCINT.

cicslib.sublib name of the sublibrary within the library containing
CICS modules

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file-id associated with the file containing CA-IDMS
modules

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

ucfcics phase name of the CICS front-end module

ucfcicse entry point name of the CICS front-end module;
matches the label specified for #UCFCICS

ucffet name of the CICS front-end table

5.2.3.2 CICS front-end execution

To execute the CICS front-end, include the following in the CICS system definition:

■ An entry in the Processing Program Table (PPT) for UCF:

ucfcics DFHPPT TYPE=ENTRY,

 PROGRAM=ucfcics,

 PGMLANG=ASSEMBLER,

 RES=NO,

 RELOAD=NO

■ An entry in the Program Control Table (PCT) for the dedicated task code and
each intermittent task code:

task-code DFHPCT TRANSID=task-code

 TRANSEC=��1,

 PROGRAM=ucfcics,

 TYPE=ENTRY

Dedicated mode considerations: For the dedicated task, task-code must match
the task code specified in the NTID parameter of the #UCFUFT macro used to create
the CICS front-end table. The name ucfcics is the name of the CICS front-end
module; the same module name should be used for all task codes, whether dedicated
or intermittent.

Chapter 5. UCF Operations 5-29

5.2 UCF front-end

Intermittent mode considerations: Each intermittent DC/UCF task defined in
the CICS system must also be defined in the DC/UCF system with a TASK statement;
the task code specified must match the task code specified in the TRANSID parameter
of the DFHPCT macro.

Entering the task code: Once defined to CICS and to the DC/UCF system, the
CICS front end can be executed by entering the dedicated task code or an intermittent
task code.

5.2.4 CICS abort session program

#UCFCICZ is a macro that you can assemble and link with the CICS terminal error
program, DFHTEP, and/or the node error program, DFHZNEP to request UCF to abort
the session for any terminal that disconnects or goes out of service.

By adding logic to the CICS terminal error program, the following situation is
avoided:

A user with a dial-up terminal dials in to CICS and begins a UCF session. During a
terminal-read request from UCF, the user hangs up (or loses the connection). A
second user simultaneously dials in and is connected to the same Terminal Control
Table Terminal Entry as the first user. The second user invokes the UCF front-end
program and finds himself in the middle of the session started by the first user.

 5.2.4.1 #UCFCICZ macro

 Syntax

��─── #UCFCICZ ───�

 �─── NTID=dedicated-task-code ───�

 �─── SQL= ─┬─ YES ──┬──�

└─ NO ← ─┘

 �─── ERRDCT= ─┬─ CSMT ← ───────────┬───�

└─ destination-name ─┘

┌──────── , ────────┐

 �─── INTCID= ── (─↓─ intc-start-task ─┴) ──────────────────────────────────�

 �─── MACLVL= ─┬─ YES ← ─┬──��

└─ NO ────┘

 Parameters

NTID
Specifies the task code of the #UCFUFT macro used to create the CICS front-end
table.

If more than one UCFCICS front-end table exists (to communicate with more than
one CA-IDMS DC/UCF back-end), you must assemble and link edit separate

5-30 CA-IDMS System Operations

5.2 UCF front-end

CICZ modules. Each assembly should specify one NTID. Each CICZ module
should be linked with a unique name.

INTCID
Specifies the CICS transaction identifiers used to start each of the IDMSINTC
interfaces. Use sublist notation when using more than one interface. When a lost
terminal event occurs, each of these interfaces is notified so that it can sign the
user off the respective IDMS system.

If multiple #UCFCICZ macros are assembled with different NTID parameters, you
need to specify each IDMSINTC transaction identifier only once.

Note: Do not specify an INTCID transaction identifier for an IDMSINTC
transaction which runs in a different region from the Terminal Owning
Region (TOR).

SQL
Specifies whether SQL suspended sessions are to be cleared by the abort session
program. The default is NO.

ERRDCT
Identifies the CICS transient data destination to be used as the target for error
messages produced by IDMSINTC and IDMSTRUE. The default
destination-name is CSMT. Use another destination if you want to route
CA-IDMS error messages to another CICS destination. The DCT entry should be
defined with a logical record length of at least 130 characters.

MACLVL
Specifies whether CICS supports MACRO-LEVEL calls. The default is YES.

5.2.4.2 How to use the UCF CICS abort session program

To use the UCF CICS abort session program:

1. Assemble and link edit #UCFCICZ

2. Add an entry to DFHPPT

3. Modify DFHTEP and/or DFHZNEP to link to UCFCICZ when a severe error
occurs

Assemble and link edit #UCFCICZ: Assemble the #UCFCICZ macro and link
edit the resulting object deck with DFHEAI, IDMSCINT, and DFHEAI0:

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 #UCFCICZ assembly and link edit

Chapter 5. UCF Operations 5-31

5.2 UCF front-end

//CICTRNS EXEC PGM=DFHEAP1$,REGION=2�48K

//STEPLIB DD DSN=cics.loadlib,DISP=SHR

//SYSPUNCH DD DSN=&&TEMPMAC(#UCFCICZ),

// DISP=(NEW,PASS),UNIT=SYSDA,SPACE=(CYL,(3,,�4),

// DCB=(LRECL=8�,BLKSIZE=312�,RECFM=FB,DSORG=PO)

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT2 DD DSN=&&SYSUT2,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT3 DD DSN=&&SYSUT3,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

�ASM XOPTS(NOPROLOG NOEPILOG NOEDF SP)

// DD DSN=idms.maclib(#UCFCICZ),DISP=SHR

// DD �

 END

/�

// EXEC PGM=ASMA9�,PARM='ALIGN'

//SYSLIB DD

// DD DSN=&&TEMPMAC,DISP=(OLD,DELETE)

// DD DSN=idms.maclib,DISP=SHR

// DD DSN=idms.srclib,DISP=SHR

//SYSIN DD �

 #UCFCICZ macro statements

 END

//LKED.SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//LKED.IN DD DSN=idms.loadlib,DISP=SHR

 DD DSN=cics.loadlib,DISP=SHR

//LKED.SYSIN DD �

 INCLUDE IN(DFHEAI,IDMSCINT,DFHEAI�)

 ENTRY CICZEP

 NAME ucfcicz(R)

/�

VSE/ESA #UCFCICZ assembly and link edit

cics.loadlib data set name of the CICS load library

idms.loadlib data set name of the load library containing CA-IDMS
modules

idms.maclib data set name of the CA-IDMS macro library

idms.srclib data set name of the CA-IDMS source library

ucfcicz name of load module chosen for CIC program

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE ucfcicz,�

 INCLUDE DFHEAI

// EXEC ASMA9�

CICZEP #UCFCICZ

 END

/�

 INCLUDE IDMSCINT

 INCLUDE DFHEAI�

 ENTRY CICZEP

// EXEC LNKEDT

5-32 CA-IDMS System Operations

5.2 UCF front-end

Add an entry to DFHPPT: Add an entry to the CICS Processing Program Table
for each CICZ program:

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file ID associated with the file containing CA-IDMS
modules

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

ucfcicz name of phase chosen for CICZ program

DFHPPT TYPE=ENTRY,PROGRAM=ucfcicz

Modify DFHTEP/DFHZNEP to link to UCFCICZ: Modify DFHTEP and/or
DFHZNEP to link to UCFCICZ when a severe error occurs.

��For information pertaining to DFHTEP and DFHZNEP, refer to CICS system
documentation.

Note: Before linking to UCFCICZ, load the address of the Terminal Control Table
into register 10.

The following examples illustrate one approach to the modification of DFHTEP and
DFHZNEP. Insert the instructions immediately before the DFHTEP/DFHZNEP exit.
The logic states that if the error action codes indicate that the application task (if any)
is to abend, a link CICZ programs (for two UCFCICS front-end tables) is made:

The following statement adds instructions to DFHTEP:

 DFHTEPM TYPE=EXIT

L 15,TCAFCAA BASE THE TACLE

 USING DFHTCTLE,15

 TM TCTLEECB+1,X'�4' ABEND TASK?

 BZ NOCICZ NO

L 1�,TCTLEPTE POINT TO TCTTE

 DROP 15

DFHPC TYPE=LINK,PROGRAM=UCFCIC1 ABORT UCF SESSION

DFHPC TYPE=LINK,PROGRAM=UCFCIC2 ABORT UCF SESSION

 NOCICZ DS �H

 BR 14

Add the following statements to DFHTEP on CICS versions that do not support
MACRO-LEVEL calls:

Chapter 5. UCF Operations 5-33

5.2 UCF front-end

 TM TCTLEECB+1,X'�4' ABEND TASK?

 BZ NOCICZ NO

LA 1�,TCTLEPTE POINTER TO TCTTE

EXEC CICS LINK PROGRAM('UCFCICZ')

COMMAREA(�(1�))

 LENGTH(4).

 NOCICZ DS �H

The following statement adds instructions to DFHZNEP:

 TM TWAROPT2,TWAOAT ABEND TASK?

 BZ NOCICZ NO

L 1�,TWATCTA POINT TO TCTTE

DFHPC TYPE=LINK,PROGRAM=UCFCICZ ABORT UCF SESSION

 NOCICZ DS �H

Add the following statements to DFHZNEP on CICS versions that do not support
MACRO-LEVEL calls:

 TM TWAROPT2,TWAOAT ABEND TASK?

 BZ NOCICZ NO

EXEC CICS LINK PROGRAM('UCFCICZ')

 COMMAREA(TWATCTA)

 LENGTH(4).

 NOCICZ DS �H

Note: In CICS 3.3 you must:

■ Define UCFCICZ in PPT with EXECKEY(CICS)

■ Add 'MODE AMODE(31)' to the LINK DECK of UCFCICZ

 5.2.5 VM/ESA front-end

The UCF VM/ESA front-end enables DC/UCF tasks to be executed from a terminal
connected to CMS running under VM/ESA.

To create the VM/ESA front-end module, assemble a #UCFCMS macro and link edit
the resulting object module with RHDCUCFC, IDMS, and IDMSOPTI (optional). The
VM/ESA front-end supports dedicated mode only and requires no front-end table
definition.

IDMSOPTI: The IDMSOPTI module identifies the back-end system with which the
front-end communicates. The module is created by assembling an IDMSOPTI macro.
You must include IDMSOPTI in the link edit if you use the VM/ESA GENMOD
command to create the VM/ESA front-end system. If you omit IDMSOPTI from the
link edit of the front-end system, the execution JCL for the front-end must include a
SYSCTL file that identifies the back-end system.

5-34 CA-IDMS System Operations

5.2 UCF front-end

Note: If you use the VM/ESA LKED command to create the front-end system, the
PARM option of the OSRUN command can be used in place of or to override
the IDMSOPTI module when the front-end is executed.

��For more information on IDMSOPTI, see Chapter 3, “Setting Up Interpartition
Communication and the SVC.”

Syntax for the #UCFCMS macro is shown below. The macro must be labeled; the
label provides the module's entry point name.

 Syntax

��─── label #UCFCMS ──�

 �─┬──────────────────────────────┬───�

└─ BUFSIZ = ─┬─ � ← ─────────┬─┘

└─ buffer-size ─┘

 �─┬─────────────────────────┬──�

└─ ,CMS327� = ─┬─ YES ← ┬─┘

└─ NO ───┘

 �─┬──────────────────────┬───�

└─ ,PA1 = ─┬─ CMS ← ─┬─┘

└─ DC ────┘

 �─┬──────────────────────────┬───�

└─ ,READBUF = ─┬─ YES ← ─┬─┘

└─ NO ────┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,SYSTEM = ─┬─ CMS ← ───────────────┬─┘

└─ front-end-system-id ─┘

 Parameters

BUFSIZ=
Specifies the size, in bytes, of the I/O buffer allocated to the terminal. Buffer-size
can be any positive integer. The default, 0, directs the system to determine the
buffer size automatically based on the terminal type.

The value specified for buffer-size must be greater than or equal to the size of the
longest data stream to be transferred between DC/UCF and the VM/ESA front-end
system. At run time, the system uses the specified value only when the value is
greater than buffer size the system would automatically supply for the terminal
type.

CMS3270=NO/YES
Specifies whether 3270-type terminals are to be supported in full-screen mode; the
default is YES.

Chapter 5. UCF Operations 5-35

5.2 UCF front-end

PA1=CMS/DC
Specifies whether the PA1 key is to function as defined in VM/ESA or is to be
forwarded to the DC/UCF system as operator input; the default is CMS. If DC is
specified, CMS3270=YES must also be specified.

READBUF=YES/NO
Specifies whether the physical terminal can execute a READ BUFFER command;
the default is YES. At bind time, the READBUF specification in the #UCFCMS
macro overrides the READBUFFER/NOREADBUFFER specification established
by the system generation PTERM statement for the physical terminal.

SYSTEM=
Specifies the one- through eight-character front-end system identifier (FESID).
Front-end-system-id must match the identifier specified in the FESID parameter of
the #FESTENT macro used to define the VM/ESA system in the UCF system
table (described under 5.3.2, “#FESTENT macro” on page 5-58). The default of
VM/ESA matches the FESID value for the VM/ESA front-end supplied with the
UCF system.

Assembly commands: The VM/ESA commands used to assemble the #UCFCMS
macro are shown below:

VM/ESA #UCFCMS assembly

GLOBAL MACLIB idmslib OSMACRO OSMACRO1 CMSLIB

FILEDEF TEXT DISK ucfcms TEXT A

ASSEMBLE #ucfcms

Note: When the assembled module is added to the TXTLIB library, the library
member name is RHDCUCMS.

Link edit commands: The VM/ESA commands used to create the VM/ESA
front-end load module are shown below:

VM/ESA front-end load module link edit

idmslib filename of the CA-IDMS MACLIB library

ucfcms filename of the assembled VM/ESA front-end module

#ucfcms filename of the file containing the #UCFCMS macro
statement

5-36 CA-IDMS System Operations

5.2 UCF front-end

FILEDEF SYSLST PRINTER

FILEDEF SYSLMOD DISK idmslib LOADLIB a2 (RECFM V LRECL 1�24 BLKSIZE 1�24

LKED linkctl

Linkage editor control statements (linkctl):

INCLUDE RHDCUCMS

INCLUDE IDMSOPTI

INCLUDE IDMS

INCLUDE RHDCUCFC

ENTRY IDMSENTR

NAME ucfcms(R)

��For more information on using UCF with VM/ESA, see CA-IDMS Installation and
Maintenance Guide - VM/ESA.

idmslib LOADLIB a2 file ID of the CA-IDMS LOADLIB library

linkctl filename of the file containing the linkage editor control
statements

ucfcms name of the VM/ESA front-end module

 5.2.6 DC front-end

The UCF DC front-end enables a terminal on one DC system to execute tasks on a
second DC system.

To create the DC front-end module, assemble a #UCFOPTS macro and link edit the
resulting object module with RHDCUCFC, RHDCDBDC, and the DC front-end table.

VM/ESA: UCF support for a DC front-end is available only when DDS is installed.

 Syntax

��─── label #UCFOPTS ───�

 �─┬─ CVNUM = cv-number, SVCNUM = svc-number ─┬─────────────────────────────────��

└─ NODE = nodename ,ACCTYPE= ── CCI ───────┘

└─ VTAM ──────┘

 �─┬──�

└─ ,DISC= ─┬─ YES ─┬─┘ └─,FEONLY= ─┬─ YES ─┬─┘

└─ NO ← ┘ └─ NO ← ┘

 Parameters

CVNUM=/SVC=
(OS/390 and VSE/ESA systems only) identifies the back-end system:

■ CVNUM=cv-number specifies the number by which the back-end system is
known to the CA-IDMS SVC, as specified by the CVNUMBER parameter of
the system generation SYSTEM statement in the back-end system definition.
Cv-number is an integer in the range 0 through 255.

Chapter 5. UCF Operations 5-37

5.2 UCF front-end

■ SVC=svc-number specifies the number of the CA-IDMS SVC that the
front-end system uses to communicate with the back-end system. Svc-number
is an integer in the range 0 through 255.

NODE=/ACCTYPE
Identifies the back-end when access is via DC/DDS:

■ NODE=nodename specifies the one- to eight-character name of a system
defined to the DC/DDS communication network.

■ ACCTYPE=CCI/VTAM specifies the type of DDS communication that is to
be used for the UCF connection.

Note: This parameter applies only to DDS.

DISC=YES/NO
Specifies the action the back-end DC/UCF is to take at the end of an intermittent
mode pseudo-converse. DISC=YES specifies that all DC/UCF back-end resources
are to be freed. DISC=NO specifies that the DC/UCF back-end terminal should be
put in a SUSPEND state. The default is NO.

FEONLY=YES/NO
Specifies whether the DC/UCF front-end module can also perform back-end
functions. FEONLY=YES indicates that this module only is used to perform
front-end functions. FEDONLY=NO indicates that this module can perform both
front-end and back-end functions. NO should be specified if back-end
applications are coded as described in 4.1.1.3, “DC front-end” on page 4-8. The
default is NO.

Note: FEONLY=YES must be specified if a front-end module is to be used on
one system to allow UCF terminals on that system to access another DC
UCF back-end system. For example, consider the following scenario:

A CICS front-end accesses DC UCF system 1 via UCF using a dedicated
task code. At the ENTER NEXT TASK CODE prompt, the terminal
operator enters task code DBDC2. This is intended to connect to DC UCF
system 2 via UCF. Since the DC UCF system 1 terminal is a UCF
terminal, DBDC2 must invoke a front-end module generated with a
specification of FEONLY=YES.

The CVNUM/NODE specification can be overridden at run time with the DCUF SET
UCF command. DCUF commands are described in CA-IDMS System Tasks and
Operator Commands.

 5.2.6.1 Assembly JCL

The JCL used to create the DC front-end load module is shown below for OS/390,
VSE/ESA, VM/ESA, and BS2000/OSD operating systems.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 DC front-end options macro assembly

5-38 CA-IDMS System Operations

5.2 UCF front-end

// EXEC ASMA9�

//ASM.SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

//ASM.SYSIN DD �

#UCFOPTS

 END

//LKED.SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//LKED.IN DD DSN=idms.loadlib,DISP=SHR

//LKED.SYSIN DD �

 INCLUDE IN(RHDCUCFC, RHDCDBDC,ucffet)

 MODE AMODE(31)

 MODE RMODE(ANY)

 ENTRY DBDCEP1

 NAME ucfdbdc(R)

/�

VSE/ESA DC front-end load module assembly

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

ucfdbdc name of the DC front-end load module

ucffet name of the DC front-end table

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE ucfdbdc,�

// EXEC ASMA9�

#UCFOPTS

 END

/�

 INCLUDE RHDCUCFC

 INCLUDE RHDCDBDC

 INCLUDE ucffet

 ENTRY DBDCEP1

// EXEC LNKEDT

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file-id associated with the file containing CA-IDMS
modules

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

ucfdbdc phase name of the DC front-end module

ucffet name of the DC front-end table

Chapter 5. UCF Operations 5-39

5.2 UCF front-end

VM/ESA DC front-end load module assembly

GLOBAL MACLIB idmslib

FILEDEF TEXT DISK ucfdbdc TEXT A

ASSEMBLE #ucfopts

FILEDEF SYSLST PRINTER

FILEDEF SYSLMOD DISK idmslib LOADLIB a2 (RECFM V LRECL 1�24 BLKSIZE 1�24

LKED linkctl

Linkage editor control statements (linkctl):

INCLUDE ucfopts

INCLUDE RHDCUCFC

INCLUDE RHDCDBDC

INCLUDE ucffet

ENTRY DBDCEP1

NAME ucfdbdc(R)

BS2000/OSD DC front-end load module assembly

idmslib filename of the CA-IDMS MACLIB library

idmslib LOADLIB a2 file ID of the CA-IDMS LOADLIB library

linkctl filename of the file containing the linkage editor control
statements

ucfdbdc name of the DC front-end module

ucffet name of the DC front-end table

#ucfopts filename of the file containing the #UCFOPTS macro
statement

ucfopts name of the UCF options macro

/DELETE-SYSTEM-FILE SYSTEM-FILE=�OMF

/ADD-FILE-LINK ALTLIB,F-NAME=idms.maclib

/ASSIGN-SYSDTA TO=�SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=�SYSDTA -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=�OMF -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

 #UCFOPTS

 END

//END

/REM-FILE-LINK ALTLIB

/START-BINDER

//START-LLM-CREATION INTERNAL-NAME=ucfdbdc

//INC-MOD LIB=�OMF

//INC-MOD LIB=idms.loadlib,ELEM=RHDCUCFC

//INC-MOD LIB=idms.loadlib,ELEM=RHDCDBDC

//INC-MOD LIB=idms.dba.loadlib,ELEM=ucffet

//SAVE-LLM LIB=idms.dba.loadlib,ELEM=ucfdbdc(VER=@), -

// OVER=YES,ENTRY-POINT=IDMSENTR

//END

5-40 CA-IDMS System Operations

5.2 UCF front-end

idms.loadlib filename of the CA-IDMS load library

idms.maclib filename of the CA-IDMS macro library

idms.dba.loadlib filename of the CA-IDMS load library containing the
DMCL and database name table load modules

ucfdbdc name of the DC front-end module

ucffet name of the DC front-end table

ucfopts name of the UCF options macro

5.2.6.2 DC front-end execution

To execute the DC front-end module, include the following system generation
statements in the definition of the DC front-end:

■ A PROGRAM statement to define the DC front-end:

ADD PROGRAM ucfdbdc

LANGUAGE IS ASSEMBLER

 NOPROTECT

 NONREENTRANT.

Ucfdbdc is the name of the DC front-end module.

■ A TASK statement for the dedicated task code and one for each intermittent task
code:

ADD TASK task-code

INVOKES PROGRAM ucfdbdc

 INPUT.

Dedicated mode considerations: For the dedicated task, task-code must match
the task code specified in the NTID parameter of the #UCFUFT macro used to create
the DC front-end table. Ucfdbdc is the name of the DC front-end module; use the
same module name for all task codes, whether dedicated or intermittent.

Intermittent mode considerations: Each intermittent task defined in the DC
front-end system must also be defined in the DC/UCF back-end with a TASK
statement. The specified task code must match the task code specified in the DC
front-end system definition.

Chapter 5. UCF Operations 5-41

5.2 UCF front-end

 5.2.7 IMS-DC front-end

The UCF IMS-DC front-end enables DC/UCF tasks to be executed from a terminal
connected to IMS-DC.

To create the IMS-DC front-end module, assemble a #UCFIMS macro with the
front-end table and abend recovery routine included, and link edit the resulting load
module with RHDCUCFC, IDMS, IDMSOPTI (optional), the IMS-DC front-end table,
and the IMS-DC module ASMTDLI.

Note: The IMS-DC front-end module is nonreentrant.

IDMSOPTI: The IDMSOPTI module identifies the back-end system with which the
front-end communicates. The module is created by assembling an IDMSOPTI macro.
If you omit IDMSOPTI from the link edit of the front-end system, the execution JCL
for the front-end must include a SYSCTL file that identifies the back-end.

��For more information on IDMSOPTI, see Chapter 3, “Setting Up Interpartition
Communication and the SVC.”

Prototype terminal definition: When defining the IMS-DC front-end table, code
no more than one #UCFUTD macro for a prototype terminal. At run time, after the
first prototype terminal definition is encountered, subsequent prototype definitions are
ignored. Typically, the IMS-DC front-end table includes a prototype definition for the
most common type of terminal at the site and specific definitions for each terminal of
a different type.

The example below shows #UCFUTD macros that define a prototype 3277 model 2
and seven specific terminals of other types:

#UCFUTD TYPE=T3277,MODEL=2

#UCFUTD TYPE=TTY,TERM=TWX�1

#UCFUTD TYPE=TTY,TERM=TWX�2

#UCFUTD TYPE=TTY,TERM=TWX�5

#UCFUTD TYPE=T3277,MODEL=3,NLINES=32,TERM=REM��3

#UCFUTD TYPE=T3277,MODEL=4,NLINES=43,TERM=LOC�46

#UCFUTD TYPE=T3277,MODEL=5,NLINES=27,NCHARS=132,TERM=REM�32

#UCFUTD TYPE=T3279,MODEL=2,TERM=COLOR33

Syntax for the #UCFIMS macro is shown below. The macro must be labeled; the
label provides the module's entry point name.

 Syntax

5-42 CA-IDMS System Operations

5.2 UCF front-end

��─── label #UCFIMS ──�

 �─┬────────────────────────────┬───�

└─ LOG = ─┬─ hex-log-code ─┬─┘

└─ NO ← ─────────┘

 �─┬───┬──────────────────────────────��

└─ ,SPAOFST = ─┬─ � ← ────────────────────┬─┘

└─ scratchpad-area-offset ─┘

 Parameters

LOG=
Specifies whether messages describing error conditions that cause the front-end
module to abend are to be written to the IMS-DC system log:

■ NO (default) — Abend error messages is not written to the IMS system log.

■ Hex-log-code — Abend error messages are written to the IMS-DC system
log. Hex-log-code specifies the user log code and must be a two-digit
hexadecimal value in the range A0 through EF. To determine the appropriate
user log code, refer to the applicable IMS-DC documentation.

SPAOFST=
Specifies the location of the 120-byte work area to be used by UCF for saving
information during terminal converses. Scratchpad-area-offset specifies the offset
of the work area beyond the transaction code in the IMS-DC scratchpad area
(SPA); the default is 0.

Typically, the default value of 0 is accepted for the SPAOFST parameter. If
distributed applications are to be executed, however, the UCF work area can be
positioned elsewhere in the SPA to reserve the beginning of the SPA for passed
data.

 5.2.7.1 Assembly JCL

The JCL used to create the IMS-DC front-end load module is shown below for
OS/390.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 IMS-DC front-end load module assembly

Chapter 5. UCF Operations 5-43

5.2 UCF front-end

// EXEC ASMA9�

//SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

//SYSIN DD �

ucfimsep #UCFIMS

ucfabr #UIMSABR

ucffet #UCFUFT

 #UCFUTD

 #UCFDEND

 END

//LKED.SYSLMOD DD DSN=ims.loadlib,DISP=SHR

//LKED.IN DD DSN=idms.loadlib,DISP=SHR

//LKED.IMS DD DSN=ims.syslib,DISP=SHR

//LKED.SYSIN DD �

 INCLUDE IN(RHDCUCFC,IDMSOPTI,IDMS)

 INCLUDE IMS(ASMTDLI)

 ENTRY ucfimsep

 NAME ucfims(R)

/�

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

ims.loadlib data set name of the IMS-DC load library

ims.syslib data set name of the IMS-DC system library

ucfabar name of the IMS-DC abend recovery routine

ucfims name of the IMS-DC front-end load module

ucfimsep entry point name of the IMS-DC front-end load
module; matches the label specified for #UCFIMS

5.2.7.2 IMS-DC front-end execution

Before the IMS-DC front-end can be executed, you must generate the IMS-DC
program specification block (PSB) for the front-end module. Additionally, you must
define the front-end as an application to IMS-DC.

PSB JCL: Sample JCL used to generate the PSB for the front-end module is shown
below:

OS/390 IMS-DC front-end module PSB

// EXEC PSBGEN=UCFIMS

 //C.SYSIN DD �

 PCB TYPE=TP,MODIFY=YES

 PSBGEN PSBNAME=UCFIMS,LANG=ASSEM

 END

In the above example, UCFIMS is the name of the IMS-DC front-end module.

5-44 CA-IDMS System Operations

5.2 UCF front-end

Sample definitions: Sample definitions of the front-end as an IMS-DC application
are shown below:

APPLCTN PSB=UCFIMS,SCHDTYP=PARALLEL

TRANSACT CODE=(IMSDCDED,IDD,OLM,...),MSGTYPE=(MULTSEG,RESPONSE),SPA=134

In the above example:

■ UCFIMS is the name of the IMS-DC front-end module.

■ IMSDCDED is the task code that invokes the IMS-DC front-end in dedicated
mode (as specified by the NTID parameter of the #UCFUFT macro).

■ IDD,OLM,... are intermittent task codes that correspond to DC/UCF back-end
tasks.

■ 134, the size of the SPA, is calculated as 134 plus the value specified by the
SPAOFST parameter of the #UCFIMS macro.

 5.2.8 TIAM front-end

The UCF TIAM front-end enables DC/UCF tasks to be executed from a terminal
connected to BS2000/OSD using $DIALOG.

To create the TIAM front-end module, assemble a #UCFTIAM macro and link edit the
resulting object module with RHDCUCFC, IDMS, IDMSOPTI (optional),
BS2KDEVT, and BS2KDSCV. The TIAM front-end supports dedicated mode only
and requires no front-end table definition.

IDMSOPTI: The IDMSOPTI module identifies the back-end system with which the
front-end communicates. The module is created by assembling an IDMSOPTI macro.
If you omit IDMSOPTI from the link edit of the front-end system, the execution JCL
for the front-end must include a SYSCTL file that identifies the back-end.

��For more information on IDMSOPTI, see Chapter 3, “Setting Up Interpartition
Communication and the SVC.”

Syntax for the #UCFTIAM macro is shown below. The macro must be labeled; the
label provides the module's entry point name.

 Syntax

��─── label #UCFTIAM ───�

 �─┬───────────────────────────────────────┬──────────────────────────────────��

└─ UCFSYST = ─┬─ TIAM ← ──────────────┬─┘

└─ front-end-system-id ─┘

 Parameters

Chapter 5. UCF Operations 5-45

5.2 UCF front-end

UCFSYST=
Specifies the one- through eight-character identifier of the TIAM front-end.
Front-end-system-id must match the identifier specified in the FESID parameter of
the #FESTENT macro used to define the TIAM front-end system in the UCF
system table. TIAM, the default, matches the FESID value for the TIAM
front-end supplied with the UCF system.

Assembly JCL: The following JCL is run before modules are linked together to
create the TIAM front-end load module:

BS2000/OSD TIAM front-end load module assembly

/DELETE-SYSTEM-FILE SYSTEM-FILE=�OMF

/ADD-FILE-LINK ALTLIB,F-NAME=idms.maclib

/ASSIGN-SYSDTA TO=�SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=�SYSDTA -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=�OMF -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

ucftiam #UCFTIAM

 END ucftiam

//END

/REM-FILE-LINK ALTLIB

Load module JCL: The JCL to create the TIAM front-end load module is shown
below:

idms.maclib filename of the CA-IDMS macro library

idms.loadlib filename of the CA-IDMS load library

rhdcucft name of the TIAM object module

ucftiam entry point name of the TIAM object module

/START-BINDER

//START-LLM-CREATION INTERNAL-NAME=rhdcucft

//INC-MOD LIB=�OMF

//INC-MOD LIB=idms.loadlib,ELEM=RHDCUCFC

//INC-MOD LIB=idms.loadlib,ELEM=BS2KDSCV

//INC-MOD LIB=idms.loadlib,ELEM=IDMS

//INC-MOD LIB=idms.dba.loadlib,ELEM=IDMSOPTI

//INC-MOD LIB=idms.dba.loadlib,ELEM=BS2KDEVT

//SAVE-LLM LIB=idms.dba.loadlib,ELEM=rhdcucft(VER=@), -

// OVER=YES,ENTRY-POINT=IDMSENTR

//END

5-46 CA-IDMS System Operations

5.2 UCF front-end

BS2000/OSD TIAM front-end module execution: To execute the TIAM front-end
module, use the JCL shown below:

idms.loadlib filename of the CA-IDMS load library

idms.dba.loadlib filename of the CA-IDMS load library containing the
DMCL and database name table load modules

rhdcucft name of the TIAM front-end module

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSDTA TO=�SYSCMD

/START-PROG �MOD(ELEM=rhdcucft,LIB=idms.dba.loadlib,RUN-MODE=�ADV)

idms.dba.loadlib filename of the CA-IDMS load library containing the
DMCL and database name table load modules

idms.loadlib filename of the CA-IDMS load library

idms.sysctl filename of the SYSCTL file

idms.sysidms filename of the SYSIDMS parameter file

rhdcucft name of the TIAM front-end load module

 5.2.9 TSO front-end

The UCF TSO front-end enables DC/UCF tasks to be executed from a terminal
connected to TSO.

To create the TSO front-end module, assemble a #UCFTSO macro and link edit the
resulting object module with RHDCUCFC, IDMS, and IDMSOPTI (optional). The
TSO front-end supports dedicated mode only and requires no front-end table definition.

IDMSOPTI: The IDMSOPTI module identifies the back-end system with which the
front-end communicates. The module is created by assembling an IDMSOPTI macro.
If you omit IDMSOPTI from the link edit of the front-end system, the execution JCL
for the front-end must include a SYSCTL file that identifies the back-end system.

��For more information on IDMSOPTI, see Chapter 3, “Setting Up Interpartition
Communication and the SVC.”

Note: The TSO front-end load module is link edited into the CA-IDMS load library
during installation as module RHDCUCFT. You should reassemble and relink
edit the module only if the default options need to be changed.

Chapter 5. UCF Operations 5-47

5.2 UCF front-end

Syntax for the #UCFTSO macro is shown below. The macro must be labeled.

 Syntax

��─── label #UCFTSO ──�

 �─┬────────────────────────┬───�

└─ BREAKIN = ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,RSHWKEY = ─┬─ 24 ← ──────────────┬─┘

└─ reshow-key-number ─┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,SYSTEM = ─┬─ TSO ← ───────────────┬─┘

└─ front-end-system-id ─┘

 �─┬──────────────────────┬───�

└─ ,TONE = ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬────────────────────────┬───�

└─ ,VTAM = ─┬─ YES ← ──┬─┘

└─ NO ─────┘

 �─┬───────────────────────────────┬──�

└─ ,BUFSIZ = ─┬─ � ← ─────────┬─┘

└─ buffer-size ─┘

 �─┬─────────────────────────────┬──�

└─ ,RESETKB = ─┬─ ASIS ← ───┬─┘

└─ TASKEND ──┘

 �─┬─────────────────────────┬──�

└─ ,OPSYS = ─┬─ MVS ← ──┬─┘

└─ MSP ────┘

 �─┬────────────────────────┬───��

└─ , TCAM = ─┬─ YES ───┬─┘

└─ NO ← ──┘

 Parameters

SYSTEM=
Specifies the one- through eight-character identifier of the TSO front-end.
Front-end-system-id must match the identifier specified in the FESID parameter
of the #FESTENT macro used to define the TSO front-end system in the UCF
system table (described under 5.3.2, “#FESTENT macro” on page 5-58). TSO, the
default, matches the FESID value for the TSO front-end supplied with the UCF
system.

BREAKIN=NO/YES
Specifies whether the front-end uses the BREAKIN option when issuing TPUTS
to non-3270 terminals; the default is NO.

5-48 CA-IDMS System Operations

5.2 UCF front-end

RSHWKEY=
Specifies the value of the function key that is used by TSO to queue a dummy
input when a UCF TSO session is interrupted by a message from the operator or
by a notify. The dummy input (PF1 through PF24 or PA2) signals the front-end
program to try to reshow the screen displayed before the interruption.
Reshow-key-number must be 64 or an integer in the range 1 through 24; the
default is 24. The value 64 corresponds with PA2; 1 corresponds with PF1, and
so on.

TONE=NO/YES
Specifies whether the front-end program runs under TONE rather than TSO; the
default is NO. If YES is specified, the program issues STAX macros rather than
STTMPMD macros.

VTAM=NO/YES
Specifies whether TSO runs under ACF/VTAM; the default is YES. If YES is
specified, the TSO front-end can issue GTTERM macros to determine if a
3279-type color terminal with extended data screen support is being used. The
TSO front-end will use the TPG macro to execute 3270 read-buffer operations that
support the UCF print-key facility.

BUFSIZ=
When VTAM=YES is specified, GTTERM macro is used to obtain the terminal
screen size. Buffer size is calculated to be 1.5 times the terminal screen size, plus
a small amount of padding. This calculated amount is compared to any BUFSIZ
specification (the default is 0). The higher value of the two is used. The
calculated size is typically sufficient for processing. IBM 3270-type terminals
using extended (color) datastreams, or MAPs having many fields may need
additional buffer space. BUFSIZ may be used to increase the buffer space
allocation.

RESETKB=
Specifies whether the terminal keyboard is reset after each terminal write. Default
is 'ASIS,' where the keyboard is reset after each terminal write. An occasional
'X-F' (input inhibit) may still appear, however. If 'TASKEND' is specified, the
keyboard is eset only at end-of-task. This causes one extra terminal write per
task, but eliminates the occasional input inhibit. This may be of particular value
in an IDBCOMM environment.

OPSYS=
Default is MVS. Specify MSP when assembling on any release of the MSP/EX
operating system. The STTMPMD macro does not contain the same parameters
as the IBM version.

TCAM=NO/YES
Specifies whether TSO runs under TCAM. Default is NO. If TCAM=YES is
specified, VTAM=NO is required.

Assembly JCL: The JCL used to create the TSO front-end load module is shown
below.

Note: The following JCL does not use SMP/E. For examples of how to apply a

Chapter 5. UCF Operations 5-49

5.2 UCF front-end

modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 TSO front-end load module assembly

// EXEC ASMA9�

//ASM.SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

//ASM.SYSIN DD �

#UCFTSO macro

 END

//LKED.SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//LKED.IN DD DSN=idms.loadlib,DISP=SHR

//LKED.SYSIN DD �

 INCLUDE IN(RHDCUCFC,IDMSOPTI,IDMS)

 ENTRY IDMSENTR

 NAME ucftso(R)

/�

front-end execution: To execute the TSO front-end, use the TSO CALL verb, as
shown below:

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

ucftso name of the TSO front-end load module

CALL 'idms.loadlib(ucftso)'

Idms.loadlib is the data set name of the CA-IDMS load library. Ucftso is the name of
the TSO front-end load module.

Note: CALL can also be invoked through a TSO CLIST.

The UCF CLIST should contain an ALLOC statement for FILE(SYSIDMS), which
points to the SYSIDMS file containing the CVRETRY=OFF parameter. This
parameter causes an error to be returned to the program if the back-end system is not
active. An example of a UCFTSO CLIST can be found in the sample JCL library
offloaded at install time as member UCFTSO.

 5.2.10 UTM front-end

The UCF UTM front-end enables users to execute DC/UCF tasks from a terminal
connected to UTM.

To create a UTM front-end system, assemble the following macros:

■ #UCFUTM creates the UTM front-end module.

5-50 CA-IDMS System Operations

5.2 UCF front-end

Note: During installation, the #UCFUTM macro is assembled using the default
parameter values. The resulting module is stored in the CA-IDMS load
library as module RHDCUCFU with entry point name UCFUTM. You
should reassemble the #UCFUTM macro only if the default options need
to be changed.

■ #UCFUTMF creates the UTM format-exit module. The format-exit module
identifies a user-supplied formatting routine to be executed when the UTM
front-end module is invoked. The format-exit module also serves as a dispatcher
for the formatting routing when other program units are invoked. Only one
formatting routine can be associated with the UTM front-end module.

Note: During installation, the #UCFUTMF macro is assembled and stored in the
CA-IDMS load library as module BS2KUTMF with entry point name
UCFUTMFE. You should reassemble the #UCFUTMF macro only if the
module name and/or entry point name needs to be changed.

■ #UCFUTMS creates the UTM shutdown module. The shutdown module identifies
a user-supplied shutdown routine to be executed at each termination of a UTM
front-end task. The shutdown module first calls the user-supplied shutdown
routine and then calls the TP-monitor interface module (IDMSTCM) at entry point
IDMSTCM2 to tell the DC/UCF system that the UTM task has been disabled.
Only one shutdown routine can be associated with the UTM front-end module.

Note: During installation, the #UCFUTMS macro is assembled and stored in the
CA-IDMS load library as module BS2KUTMS with entry point name
UCFUTMSH. You should reassemble the #UCFUTMS macro only if the
module name and/or entry point name needs to be changed.

Link edit resulting object modules: Link edit the resulting object modules with
RHDCUCFC, IDMSOPTI (optional), IDMSTCM, BS2KDEVT, BS2KDSCV, the UTM
front-end table, and all UTM program units (for example, the UTM linkage program
and the UTM administration program) as described in the applicable BS2000/OSD
documentation. Only one #UCFUTD macro (without parameters) is required to create
the UCF front-end table for UTM. For information on creating the front-end table, see
5.2.1, “Front-end table” on page 5-7.

IDMSOPTI: The IDMSOPTI module identifies the back-end system with which the
front-end communicates. The module is created by assembling an IDMSOPTI macro.
If you omit IDMSOPTI from the link edit of the front-end system, the execution JCL
for the front-end must include a SYSCTL file that identifies the back-end system.

��For more information on IDMSOPTI, see Chapter 3, “Setting Up Interpartition
Communication and the SVC.”

#UCFUTM syntax: Syntax for the #UCFUTM macro is shown below. The macro
must be labeled; the label provides the module's entry point name.

Chapter 5. UCF Operations 5-51

5.2 UCF front-end

��─── label #UCFUTM ──�

 �─┬──────────────────────────────────┬───────────────────────────────────────�

│ ┌────────────── , ─────────────┐ │

└─↓- function-key = return-code ─┴─┘

 �─┬──┬─────────────────────────────────��

└─ ,UCFSYST = ─┬─ UTM ← ───────────────┬─┘

└─ front-end-system-id ─┘

 #UCFUTM parameters

UCFSYST=
Specifies the one- through eight-character front-end system identifier; the default
is UTM. Front-end-system-id must match the identifier specified in the FESID
parameter of the #FESTENT macro used to define the UTM system in the UCF
system table.

Function-key=
Associates a three-character return code with the specified function key.
Return-code must match the return code assigned to the function key in the
applicable SFUNC statement in the UTM system definition.

Valid values for function-key-k are listed below along with the corresponding
default value for return-code:

#UCFUTMF syntax: Syntax for the #UCFUTMF macro is shown below. The
macro must be labeled; the label provides the module's entry point name.

��─── label #UCFUTMF ───�

 �─┬──────────────────────────────────┬───────────────────────────────────────��

└─ UTMF = format-exit-module-name ─┘

Function Key Default Return
code

Function Key Default Return
code

K1 20Z K11 30Z

K2 21Z K12 31Z

K3 22Z K13 32Z

K4 23Z K14 33Z

K5 24Z F1 34Z

K6 25Z F2 35Z

K7 26Z F3 36Z

K8 27Z F4 37Z

K9 28Z F5 38Z

K10 29Z

5-52 CA-IDMS System Operations

5.2 UCF front-end

 #UCFUTMF parameters

UTMF=
Specifies the name of the user-supplied formatting routine.

#UCFUTMS syntax: Syntax for the #UCFUTMS macro is shown below. The
macro must be labeled; the label provides the module's entry point name.

��─── label #UCFUTMS ───�

 �─┬───────────────────────────────┬──��

└─ UTMS = shutdown-module-name ─┘

 #UCFUTMS parameters

UTMS=
Specifies the name of the user-supplied shutdown routine.

 5.2.10.1 Assembly JCL

The JCL shown below is used to assemble the #UCFUTM, #UCFUTMF, and
#UCFUTMS macros in preparation for creating the UCFUTM front-end load module.
You must also assemble a front-end table, as described under 5.2.1, “Front-end table”
on page 5-7.

BS2000/OSD UTM front-end load module assembly

Chapter 5. UCF Operations 5-53

5.2 UCF front-end

/ADD-FILE-LINK ALTLIB,F-NAME=idms.maclib

/ASSIGN-SYSDTA TO=�SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=�SYSDTA -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=idms.dba.loadlib(ELEM=rhdcucfu) -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

ucfutm #UCFUTM

//END

/REM-FILE-LINK ALTLIB

/ADD-FILE-LINK ALTLIB,F-NAME=idms.maclib

/ASSIGN-SYSDTA TO=�SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=�SYSDTA -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=idms.dba.loadlib(ELEM=bs2kutmf) -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

 ucfutmfw #UCFUTMF

 //END

/REM-FILE-LINK ALTLIB

/ADD-FILE-LINK ALTLIB,F-NAME=idms.maclib

/ASSIGN-SYSDTA TO=�SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=�SYSDTA -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=idms.dba.loadlib(ELEM=bs2kutms) -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

 ucfutmsh #UCFUTMS

 //END

/REM-FILE-LINK ALTLIB

bs2kutmf name of the UTM format-exit module

bs2kutms name of the UTM shutdown module

idms.maclib filename of the CA-IDMS macro library

idms.dba.loadlib filename of the CA-IDMS load library containing the
DMCL and database name table load modules

rhdcucfu name of the UTM front-end module

ucfutm entry point name of the UTM front-end module

ucfutmfe entry point name of the UTM format-exit module

ucfutmsh entry point name of the UTM shutdown module

5-54 CA-IDMS System Operations

5.2 UCF front-end

5.2.10.2 Load module JCL

The JCL used to create the UTM front-end load module is shown below:

BS2000/OSD UTM front-end load module link edit

/ASSIGN-SYSDTA TO=�SYSCMD

/START-BINDER

//START-LLM-CREATION INTERNAL-NAME=utmappl

//INC-MOD LIB=utm.objlib.user,ELEM=kdcrootr

//INC-MOD LIB=idms.loadlib,ELEM=RHDCUCFC

//INC-MOD LIB=idms.loadlib,ELEM=RHDCUCFU

//INC-MOD LIB=idms.loadlib,ELEM=BS2KDSCV

//INC-MOD LIB=idms.loadlib,ELEM=IDMSBSVC

//INC-MOD LIB=idms.loadlib,ELEM=IDMSTCM

//INC-MOD LIB=idms.loadlib,ELEM=bs2kutmf

//INC-MOD LIB=idms.loadlib,ELEM=bs2kutms

//INC-MOD LIB=idms.dba.loadlib,ELEM=ucffet

//INC-MOD LIB=idms.dba.loadlib,ELEM=bs2kdevt

//INC-MOD LIB=idms.dba.loadlib,ELEM=bsvcopts

//INC-MOD LIB=idms.dba.loadlib,ELEM=BS2KDEVT

//REMARK Change REMARK to to INCLUDE if necessary on next line

 //REMARK LIB=idms.dba.loadlib,ELEM=IDMSOPTI

other //INC-MOD statements as required for the application

//RESOLVE-BY-AUTOLINK LIB=utm.sys.objlib

other //RESOLVE-BY-AUTOLINK statements as required for the application

//SAVE-LLM with parameters as required for the application

//END

bs2kutmf name of the UTM format-exit module

bs2kutms name of the UTM shutdown module

idms.loadlib filename of the CA-IDMS load library

idms.dba.loadlib filename of the CA-IDMS DBA load library

kdcroot name of the UTM linkage program

rhdcucfu name of the UTM front-end module

ucffet name of the UTM front-end table

utm.sys.objlib filename of the UTM system object library containing
all necessary UTM program units

utm.user.objlib filename of the UTM user object library

5.2.10.3 UTM front-end execution

You must include the appropriate programs and transaction codes in the UTM system
definition before the UTM front-end can be executed. The example below illustrates
the UTM macros used to define the front-end module, the format-exit module, and the
shutdown module:

Chapter 5. UCF Operations 5-55

5.2 UCF front-end

PROGRAM UCFUTM,COMP=ASSEMB

PROGRAM UCFUTMFE,COMP=ASSEMB

PROGRAM UCFUTMSH,COMP=ASSEMB

EXIT PROGRAM=UCFUTMFE,USAGE=FORMAT

EXIT PROGRAM=UCFUTMSH,USAGE=SHUT

TAC UTMDC,PROGRAM=UCFUTM

TAC IDD,PROGRAM=UCFUTM

TAC OLM,PROGRAM=UCFUTM

In the above example:

■ UCFUTM is the entry point name of the UTM front-end module.

■ UTMDC is the task code that invokes the UTM front-end in dedicated mode (as
specified by the NTID parameter of the #UCFUFT macro).

■ IDD,OLM,... are intermittent task codes that correspond to DC/UCF back-end
tasks.

■ UCFUTMFE is the entry point name of the UTM format-exit module.

■ UCFUTMSH is the entry point name of the UTM shutdown module.

Additional considerations: The following additional considerations apply when
defining the UTM system:

■ The length of the UTM communication program area must be equal to at least 124
bytes.

■ The maximum message length specified by the FORMUSR parameter of the
KDCMAX macro must be equal to at least 4096 bytes.

■ Terminal descriptions to be passed to the DC/UCF system are located in the
BS2KDEVT module. The key used to search the module for a given device is
defined by the TERMN parameter of the UTM PTERM statement. If the default
TERMN values are not used, the BS2KDEVT module must be adapted and
recompiled. The source for BS2KDEVT is stored in the CA-IDMS DBA source
library during installation.

5-56 CA-IDMS System Operations

5.3 UCF back-end

 5.3 UCF back-end

The UCF back-end exists in the DC/UCF run-time region/partition.

UCF uses a system table to control access to the back-end system by front-end
programs and terminals. The system table contains the following information:

■ The maximum number of front-end systems that can access the back-end
concurrently

■ The initial status of each front-end system (that is, online or offline)

A system table named RHDCFSTB is installed with UCF. This table permits access
to the UCF back-end by any UCF front-end system that has been defined with a
system identifier of: BATCH, CICS, VM/ESA, IMS, DC, TIAM, TSO, or UTM. If
you ensure that only front-end system identifiers from the above list are used, a new
UCF system table need not be assembled. A system identifier need not reflect the
actual TP monitor; for example, a CICS front-end could be defined with a front-end
system identifier of CICS.

The UCF system table is created by assembling two macros: #FESTDEF and
#FESTENT. The resulting object module must be linked as a separate load module.
Each macro is discussed separately below, followed by a sample system table
definition and the JCL used to link edit the system table.

The UCF system table is loaded at startup. The "DCMT VARY UCF FRONT-END
SYSTEM TABLE NEW COPY" command may be used to load an altered table
without cycling the DC/UCF region or partition.

 5.3.1 #FESTDEF macro

The #FESTDEF macro is used to create the header for the UCF system table.
#FESTDEF specifies the maximum number of front-end systems permitted to access
the UCF back-end concurrently. One #FESTDEF macro is assembled for each UCF
back-end. #FESTDEF must be the first macro in the source file.

Syntax: Syntax for the #FESTDEF macro is shown below. The macro must be
labeled; the label provides the module's entry point name.

��─── label #FESTDEF ───�

 �─── CNT = system-count ───��

 Parameters

CNT=
Specifies the maximum number of front-end systems that can be defined in the
UCF system table. System-count must be an integer in the range 1 through 32767.

Chapter 5. UCF Operations 5-57

5.3 UCF back-end

 5.3.2 #FESTENT macro

The #FESTENT macro is used to create an entry in the UCF system table for each
front-end system. #FESTENT identifies the front-end systems that are permitted to
access the UCF back-end and the type of processing permitted from that front-end.

One #FESTENT macro must be coded for:

■ Each front-end system that is to access the back-end using UCF

■ Each front-end system that supports external request unit processing

The number of #FESTENT macros cannot exceed the value specified in the CNT
parameter of the #FESTDEF macro.

Syntax for the #FESTENT macro is shown below. The macro must be unlabeled.

 Syntax

��─── #FESTENT ───�

 �─── FESID = front-end-system-id ──�

 �─┬───────────────────────────────┬──�

└─ ,BLKSIZ = ─┬─ packet-size ─┬─┘

└─ 4�96 ← ──────┘

 �─┬───────────────────────────┬──��

└─ ,ISTAT = ─┬─ ONLINE ← ─┬─┘

└─ OFFLINE ──┘

 �─┬───┬───────────────────────────�

└─ ,MAX = ─┬─ max-concurrent-session-count ───────────┤

└─ -1 ← ───────────────────────────────────┘

 Parameters

FESID=
Specifies the one- through eight-character name of the front-end system. For UCF
processing, front-end-system-id must match the identifier specified in the
#UCFUFT macro or, for the batch, VM/ESA, TIAM, and TSO front-ends, the
system name specified in the #UCFBTCH, #UCFCMS, #UCFTIAM, or #UCFTSO
macro.

For external request unit processing:

■ The first four characters of front-end-system-id are one of the following
values:

– BATC (the default), specifying batch communication

– System-name, as specified in the TPNAME parameter of the IDMSINTC
macro, specifying the CICS system from which the request comes

– DCXX, specifying all DC systems from which request units may be
initiated

■ The last four characters of front-end-system-id are BULK.

5-58 CA-IDMS System Operations

5.3 UCF back-end

BLKSIZ
Specifies the size, in bytes, of the packet to use for a batch external request.
Packet-size is an integer in the range 0 through 32000; the default is 4096.
Smaller packets use less of the OS/390 common system area (CSA) while larger
packets use less CPU on both the front-end and the back-end for buffering.

ISTAT=ONLINE/OFFLINE
Specifies the initial status of the back-end system when the DC/UCF system starts
up:

■ ONLINE (default) — The back-end system is online at system startup.
Connection requests from the system's front-end terminals are accepted by the
DC/UCF system.

■ OFFLINE — The back-end system is offline at system startup. Connection
requests from the system's front-end terminals are not accepted until the
system is varied online with a DCMT VARY UCF SYSTEM command.

MAX=
Specifies the maximum number of concurrent sessions allowed for
front-end-system-id, in the range -1 through +32767. The default value, -1,
indicates that there is no limit. When the maximum number of sessions is
reached, further connections are not allowed.

5.3.3 Sample system table definition

The following statements define a UCF system table with BATCH, TSO, and CICS
front-end systems and two systems that support external request units:

FESTABLE #FESTDEF CNT=4

 #FESTENT FESID=BATCH

 #FESTENT FESID=TSO

 #FESTENT FESID=CICS

 #FESTENT FESID=BATCBULK,BLKSIZ=12���

 #FESTENT FESID=CICPBULK,BLKSIZ=2���

 END FESTABLE

5.3.4 System table JCL

The JCL used to assemble and link edit the UCF system table is shown below for
OS/390, VSE/ESA, VM/ESA, and BS2000/OSD operating systems.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 UCF system table assembly and link edit

Chapter 5. UCF Operations 5-59

5.3 UCF back-end

// EXEC ASMA9�

 //ASM.SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

//ASM.SYSIN DD �

 COPY #UCFDS DSECT for UCF control blocks

rhdcfstb CSECT

fstbep #FESTDEF CNT=system-count

#FESTENT macros

 END fstbep

//LKED.SYSLMOD DD DSN=idms.loadlib(rhdcfstb),DISP=SHR

VSE/ESA UCF system table assembly and link edit

fstbep entry point name of the system table

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

rhdcfstb name of the system table

system-count number of #FESTENT macros

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE rhdcfstb,�

// EXEC ASMA9�

 COPY #UCFDS DSECT for UCF control blocks

rhdcfstb CSECT

fstbep #FESTDEF CNT=system-count

#FESTENT macros

 END fstbep

/�

// EXEC LNKEDT

fstbep entry point name of the system table

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file-id associated with the file containing CA-IDMS
modules

nnnnnn volume serial number

rhdcfstb phase name of the system table

ssss starting track (CKD) or block (FBA) of disk extent

system-count number of #FESTENT macros

5-60 CA-IDMS System Operations

5.3 UCF back-end

VM/ESA UCF system table assembly and link edit

GLOBAL MACLIB idmslib

FILEDEF TEXT DISK rhdcfstb TEXT A

ASSEMBLE systab

FILEDEF SYSLST PRINTER

FILEDEF SYSLMOD DISK idmslib LOADLIB a2 (RECFM V LRECL 1�24 BLKSIZE 1�24

LKED linkctl

Assembler statements (systab):

 COPY #UCFDS DSECT for UCF control blocks

rhdcfstb CSECT

fstbep #FESTDEF CNT=system-count

#FESTENT macros

 END fstbep

Linkage editor control statements (linkctl):

INCLUDE rhdcfstb

ENTRY fstbep

NAME rhdcfstb(R)

BS2000/OSD UCF system table assembly and link edit

fstbep entry point name of the system table

idmslib filename of the CA-IDMS MACLIB library

idmslib MACLIB a2 file ID of the CA-IDMS MACLIB library

idmslib LOADLIB a2 file ID of the CA-IDMS LOADLIB library

linkctl filename of the file containing the linkage editor control
statements

maclib ddname of the CA-IDMS MACLIB library

rhdcfstb name of the system table

systab filename of the file containing the system table macro
statements

system-count number of #FESTENT macros

/ADD-FILE-LINK ALTLIB,F-NAME=idms.maclib

/ASSIGN-SYSDTA TO=�SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=�SYSDTA -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=idms.dba.loadlib(ELEM=rhdcfstb) -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

COPY #UCFDS DSECT for UCF control blocks

rhdcfstb CSECT

fstbep #FESTDEF CNT=system-count

#FESTENT macros

 END fstbep

//END

/REM-FILE-LINK ALTLIB

Chapter 5. UCF Operations 5-61

5.3 UCF back-end

idms.maclib filename of the CA-IDMS macro library

idms.dba.loadlib filename of the CA-IDMS load library containing the
DMCL and database name table load modules

rhdcfstb name of the system table

fstbep entry point name of the system table

system-count number of #FESTENT macros

5-62 CA-IDMS System Operations

5.4 UCF system generation statements

5.4 UCF system generation statements

To define a UCF system, include the following system generation statements in the
DC/UCF system definition:

■ One LINE statement that specifies TYPE IS UCFLINE.

■ One PTERM statement for each UCF front-end physical terminal. The number of
PTERM statements with TYPE IS UCFTERM equals the maximum number of
UCF front-end terminals that can access the UCF back-end at one time.

■ One LTERM statement for each physical terminal.

■ One TASK statement for each intermittent task. The task code specified must
match the task code specified in the host TP-monitor system definition. The
dedicated task does not require a TASK statement.

■ One PROGRAM statement for each program associated with each task intermittent
task.

■ Two TASK statements to define the BYE and SUSPEND system tasks.

Chapter 5. UCF Operations 5-63

5.5 Printer support

 5.5 Printer support

A DC back-end can direct printed output to 3280-type printers that are controlled by a
front-end TP monitor. Printer support is available for the following types of
front-ends:

 ■ Batch

 ■ DC

 ■ IMS-DC

 ■ CICS

Starting UCF printer support: To start UCF printer support, the UCF front-end
module attaches a nonterminal copy of itself and then returns. The nonterminal copy
of the task, called the UCF front-end print control task, runs indefinitely. The task:

■ Establishes communication with UCF. If the back-end system is not running, the
print control task attempts connection every five minutes.

■ Identifies the front-end printers that the task controls.

■ Monitors requests from UCF to access a particular printer. When UCF requests
printing, the print control task attaches another nonterminal copy of itself to direct
the print request to a particular front-end printer.

Shutting down UCF printer support: When either the front-end system or
back-end system is shut down, the UCF printer connection should be broken in an
orderly fashion:

1. Drain all UCF back-end printer LTERMs by issuing the DCMT VARY PRINTER
ALL DRAIN command. The DCMT DISPLAY PRINTERS command can be
used to verify that the printers are drained.

2. Vary the back-end printer PTERMs offline by issuing the DCMT VARY PTERM
DISCONNECT command. This should cause the UCF front-end print control task
to terminate.

At this point, the front-end system, the back-end system, or both can be shut down.

Default print classes for front-end terminals: A default print class can be
established for each terminal defined at DC/UCF system generation time:

■ For non-UCF terminals, use the PRINTER CLASS/DESTINATION parameter of
the system generation PTERM statement.

■ For UCF terminals, specify a PRTCLS parameter on the #UCFUTD macro for
each front-end terminal. If not specified, PRTCLS defaults to 0 (zero).

In a UCF terminal definition, the PRINTER CLASS/DESTINATION parameter of
the PTERM statement is ignored.

5-64 CA-IDMS System Operations

5.5 Printer support

5.5.1 Batch printer support

Through the UCF batch front-end, reports that are queued to DC printers can be
printed from a batch program.

You create the batch program by specifying PRINT=YES in the JCL to assemble the
#UCFBTCH macro and by link editing the resulting object module with RHDCUCFC,
IDMS, and IDMSOPTI (optional).

IDMSOPTI: The IDMSOPTI module identifies the back-end system with which the
front-end communicates. The module is created by assembling an IDMSOPTI macro.
If you omit IDMSOPTI from the link edit of the front-end system, the execution JCL
for the front-end must include a SYSCTL file that identifies the back-end system.

��For more information on IDMSOPTI, see Chapter 3, “Setting Up Interpartition
Communication and the SVC.”

 5.5.1.1 Assembly JCL

The JCL used to create the UCF batch print support module is shown below for
OS/390, VSE/ESA, VM/ESA, and BS2000/OSD operating systems.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 Batch print support module assembly

// EXEC ASMA9�

//ASM.SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

//ASM.SYSIN DD �

#UCFBTCH PRINT=YES,OS=OS

 END

//LKED.SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//LKED.IN DD DSN=idms.loadlib,DISP=SHR

//LKED.SYSIN DD �

 INCLUDE IN(RHDCUCFC,IDMSOPTI,IDMS)

 ENTRY IDMSENTR

 NAME ucfbatp(R)

/�

VSE/ESA Batch print support module assembly

idms.loadlib data set name of the CA-IDMS load library

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

ucfbatp name of the batch print support load module

Chapter 5. UCF Operations 5-65

5.5 Printer support

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE ucfbatp,�

// EXEC ASMA9�

 #UCFBTCH PRINT=YES,OS=DOS

 END

/�

 INCLUDE RHDCUCFC

 INCLUDE IDMS

 INCLUDE IDMSOPTI

 ENTRY IDMSENTR

// EXEC LNKEDT

VM/ESA Batch print support module assembly

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file-id associated with the file containing CA-IDMS
modules

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

ucfbatp phase name of the batch print support module

GLOBAL MACLIB idmslib

FILEDEF TEXT DISK ucfbatp TEXT A

ASSEMBLE #ucfbtch

TXTLIB ADD userlib ucfbatp

FILEDEF SYSLST PRINTER

FILEDEF SYSLMOD DISK idmslib LOADLIB a2 (RECFM V LRECL 1�24 BLKSIZE 1�24

FILEDEF objlib DISK userlib TXTLIB a

LKED linkctl

Linkage editor control statements (linkctl):

INCLUDE objlib(ucfbatp)

INCLUDE IDMSOPTI

INCLUDE IDMS

INCLUDE RHDCUCFC

ENTRY IDMSENTR

NAME ucfbatp(R)

5-66 CA-IDMS System Operations

5.5 Printer support

BS2000/OSD Batch print support module assembly

idmslib filename of the CA-IDMS MACLIB library

idmslib LOADLIB a2 file ID of the CA-IDMS LOADLIB library

linkctl filename of the file containing the linkage editor control
statements

objlib ddname of the user TXTLIB library

ucfbatp name of the batch print support module

userlib filename of the user TXTLIB library

userlib TXTLIB a file ID of the user TXTLIB library

#ucfbtch filename of the file containing the #UCFBTCH macro
statement that specifies PRINT=YES,OS=OS

/DELETE-SYSTEM-FILE SYSTEM-FILE=�OMF

/ADD-FILE-LINK ALTLIB,F-NAME=idms.maclib

/ASSIGN-SYSDTA TO=�SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=�SYSDTA -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=�OMF -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

 #UCFBTCH PRINT=YES,OS=BS2K

 END

//END

/REM-FILE-LINK ALTLIB

/START-BINDER

//START-LLM-CREATION INTERNAL-NAME=ucfbatp

//INC-MOD LIB=�OMF

//INC-MOD LIB=idms.loadlib,ELEM=RHDCUCFC

//INC-MOD LIB=idms.loadlib,ELEM=IDMS

//INC-MOD LIB=idms.dba.loadlib,ELEM=IDMSOPTI

//SAVE-LLM LIB=idms.dba.loadlib,ELEM=ucfbatp(VER=@), -

// OVER=YES,ENTRY-POINT=IDMSENTR

//END

idms.loadlib filename of the CA-IDMS load library

idms.maclib filename of the CA-IDMS macro library

idms.dba.loadlib filename of the CA-IDMS load library containing the
DMCL and database name table load modules

ucfbatp name of the batch print support module

Chapter 5. UCF Operations 5-67

5.5 Printer support

5.5.1.2 Batch program execution

When executed, the batch program reads input from SYSIPT. SYSIPT should contain
a single card that identifies the UCF printer to which reports are queued. The
statement is interpreted as terminal input and is passed to the DC/UCF system.

All reports queued to the specified printer are printed. If no reports are queued when
the program is executed, an explanatory message is printed.

The JCL for printing all reports queued to a UCF printer is shown below:

OS/390 Batch print program

// EXEC PGM=ucfbatp

 //STEPLIB DD DSN=idms.loadlib,DISP=SHR

//sysctl DD DSN=idms.sysctl,DISP=SHR

//SYSUDUMP DD SYSOUT=A

//SYSLST DD SYSOUT=A

 //SYSIDMS DD �

SYSIDMS parameters, as required

//SYSIPT DD �

printer-id

VSE/ESA Batch print program

idms.loadlib data set name of the CA-IDMS load library

idms.sysctl data set name of the SYSCTL file

printer-id name specified in the NAME parameter of the
corresponding PTERM statement in the DC/UCF
system definition

sysctl ddname of the SYSCTL file

ucfbatp name of the batch print support load module

// UPSI b if specified in the IDMSOPTI module

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// EXTENT SYSnnn,nnnnnn,,,ssss,54

// ASSGN SYSnnn,DISK,VOL=nnnnnn,SHR

// DLBL SYSIDMS,'#SYSIPT',�,SD

// EXEC ucfbatp

printer-id

/�

Note: You can define a SYSCTL file in the JCL to override IDMSOPTI
specifications for the back-end system:

5-68 CA-IDMS System Operations

5.5 Printer support

// DLBL sysctl,'idms.sysctl',,SD

// EXTENT sys��8,nnnnnn

// ASSGN sys��8,DISK,VOL=nnnnnn,SHR

VM/ESA Batch print program

b appropriate one- through eight-character UPSI bit
switch, as specified in the IDMSOPTI module

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file-id associated with the file containing CA-IDMS
modules

idms.sysctl file-id of the SYSCTL file

nnnnnn volume serial number

printer-id name specified in the NAME parameter of the
corresponding PTERM statement in the DC/UCF
system definition

ssss starting track (CKD) or block (FBA) of disk extent

sysctl filename of the SYSCTL file

sys��8 logical unit assignment of the SYSCTL file

ucfbatp phase name of the batch print support module

FILEDEF SYSLST PRINTER

FILEDEF SYSIPT DISK printer id a

FILEDEF SYSIDMS DISK sysidms parms a

GLOBAL LOADLIB idmslib

OSRUN ucfbatp

Note: You can define a SYSCTL file in the JCL to override IDMSOPTI
specifications for the back-end system:

FILEDEF sysctl DISK sysctl idms a

Chapter 5. UCF Operations 5-69

5.5 Printer support

BS2000/OSD Batch print program

idmslib name of the CA-IDMS LOADLIB library

printer id a file ID of the file containing the name specified in the
NAME parameter of the corresponding PTERM
statement in the DC/UCF system definition

sysctl ddname of the SYSCTL file

sysctl idms a file ID of the SYSCTL file

sysidms parms a file ID of the SYSIDMS parameters file

ucfbatp name of the batch print support module

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSDTA TO=�SYSCMD

/START-PROG �MOD(ELEM=ucfbatp,LIB=idms.dba.loadlib,RUN-MODE=�ADV)

printer-id

OS/390 example: The following example defines and implements UCF batch print
support. A UCF line is defined during system generation with two printers, BATCH1
and BATCH2:

idms.dba.loadlib filename of the load library containing the DMCL and
database name table load modules

idms.loadlib filename of the CA-IDMS load library

idms.sysctl filename of the SYSCTL file

idms.sysidms filename of the SYSIDMS parameters file

printer-id name specified in the NAME parameter of the
corresponding PTERM statement in the DC/UCF
system definition

sysctl linkname of the SYSCTL file

ucfbatp name of the batch print support load module

5-70 CA-IDMS System Operations

5.5 Printer support

LINE UCF TYPE IS UCFLINE MODULE RHDCFSTB.

PTERM UCF�1 TYPE UCFTERM.

 LTERM UCF�1.

 .

 .

 .

PTERM UCFPRT1 TYPE UCFTERM NAME BATCH1.

LTERM UCFPRT1 PRINTER CLASS (1,2,3).

PTERM UCFPRT2 TYPE UCFTERM NAME BATCH2.

LTERM UCFPRT2 PRINTER CLASS (4).

A program called UCFBATP is created by assembling and linking the #UCFBTCH
macro with the options PRINT=YES and OS=OS; the entry point of #UCFBTCH is
BATCHEP:

OS/390 Sample print support module assembly

// EXEC ASMA9�

//ASM.SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

//ASM.SYSIN DD �

 #UCFBTCH PRINT=YES,OS=OS

 END

//LKED.SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//LKED.IN DD DSN=idms.loadlib,DISP=SHR

//LKED.SYSIN DD �

 INCLUDE IN(RHDCUCFC,IDMSOPTI,IDMS)

 ENTRY IDMSENTR

 NAME UCFBATP(R)

/�

All reports queued to the printer identified by the name BATCH1 are printed using the
program UCFBATP:

OS/390 Sample batch print program

// EXEC PGM=UCFBATP

 //STEPLIB DD DSN=DBDC.LOADLIB,DISP=SHR

//SYSCTL DD DSN=DBDC.SYSCTL,DISP=SHR

//SYSUDUMP DD SYSOUT=A

//SYSLST DD SYSOUT=A

//SYSIPT DD �

BATCH1

Reports queued to printer BATCH2 are printed by submitting the JCL with the card
BATCH2 instead of BATCH1.

BS2000/OSD Sample batch print program The following example illustrates a UCF
batch print program to print reports queued to printer BATCH1 for BS2000/OSD
users:

Chapter 5. UCF Operations 5-71

5.5 Printer support

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=idms.dba.loadlib

/ADD-FILE-LINK L-NAME=CDMSLIB1,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=CDMSLODR,F-NAME=idms.loadlib

/ADD-FILE-LINK L-NAME=sysctl,F-NAME=idms.sysctl,SHARED-UPD=�YES

/ADD-FILE-LINK L-NAME=SYSIDMS,F-NAME=idms.sysidms

/ASSIGN-SYSDTA TO=�SYSCMD

/START-PROG �MOD(ELEM=UCFBATP,LIB=idms.dba.loadlib,RUN-MODE=�ADV)

BATCH1

5.5.2 Printer support for IMS-DC

UCF provides printer support for IMS-DC through a separate front-end that consists of
a main task and a subtask:

■ The main task maintains the IMS-DC message queues. The main task is created
by the #UCFIMSP macro.

■ The subtask receives new print requests from the back-end and passes them to the
main task. The subtask is created by the #UCFIMSS macro.

To create the printer front-end load modules, assemble the #UCFIMSP and
#UCFIMSS macros and link edit each of the resulting modules with RHDCUCFC,
IDMSOPTI (optional), IDMS, the IMS-DC front-end table (main task only), and the
IMS-DC module ASMTDLI. A common front-end table can contain both terminal and
printer definitions.

IDMSOPTI: The IDMSOPTI module identifies the back-end system with which the
printer front-end communicates. The module is created by assembling an IDMSOPTI
macro. If you omit IDMSOPTI from the link edit of the front-end module, the
execution JCL for the front-end must include a SYSCTL file that identifies the
back-end.

��For more information on IDMSOPTI, see Chapter 3, “Setting Up Interpartition
Communication and the SVC.”

5.5.2.1 Main task assembly JCL

The JCL used to create the IMS-DC printer front-end main task is shown below.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 IMS-DC printer front-end main task assembly

5-72 CA-IDMS System Operations

5.5 Printer support

// EXEC ASMA9�

//ASM.SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

//ASM.SYSIN DD �

ucfmain #UCFIMS

 END

//LKED.SYSLMOD DD DSN=ims.loadlib,DISP=SHR

//LKED.IN DD DSN=idms.loadlib,DISP=SHR

//LKED.IMS DD DSN=ims.syslib,DISP=SHR

//LKED.SYSIN DD �

 INCLUDE IN(RHDCUCFC,IDMSOPTI,IDMS,ucffet)

 INCLUDE IMS(ASMTDLI)

 ENTRY ucfmain

 NAME ucfmain(R)

/�

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

ims.loadlib data set name of the IMS-DC load library

ims.syslib data set name of the IMS-DC system library

ucffet name of the IMS-DC front-end table

ucfmain name of the IMS-DC printer front-end main-task load
module

5.5.2.2 Subtask assembly JCL

The JCL used to create the IMS-DC printer front-end subtask is shown below:

OS/390 IMS-DC printer front-end subtask load module assembly

// EXEC ASMA9�

//ASM.SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

//ASM.SYSIN DD �

ucfsub #UCFIMS

 END

//LKED.SYSLMOD DD DSN=ims.loadlib,DISP=SHR

//LKED.IN DD DSN=idms.loadlib,DISP=SHR

//LKED.IMS DD DSN=ims.syslib,DISP=SHR

//LKED.SYSIN DD �

 INCLUDE IN(RHDCUCFC,IDMSOPTI,IDMS)

 INCLUDE IMS(ASMTDLI)

 ENTRY ucfsub

 NAME ucfsub(R)

/�

Chapter 5. UCF Operations 5-73

5.5 Printer support

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

ims.loadlib data set name of the IMS-DC load library

ims.syslib data set name of the IMS-DC system library

ucfsub name of the IMS-DC printer front-end subtask load
module

5.5.2.3 Executing the printer front-end

Before the IMS-DC printer front-end can be executed, you must generate the IMS-DC
program specification block (PSB) for the printer front-end main-task module.

Sample JCL used to generate the PSB for the printer front-end is shown below:

OS/390 IMS-DC printer front-end module PSB

// EXEC PSBGEN=UCFMAIN

 //C.SYSIN DD �

 PCB TYPE=TP,MODIFY=YES

 PSBGEN PSBNAME=UCFMAIN,LANG=ASSEM,CMPAT=YES

 END

In the above example, UCFMAIN is the name of the IMS-DC printer front-end
main-task load module.

The printer front-end executes as a standard BMP job under IMS/VS. To execute the
printer front-end, you must either generate a batch application to run the front-end as a
BMP or use a currently defined BMP for the purpose. In either case, you must ensure
that the entry name corresponds to the PSB allocated for the printer front-end.

5.5.3 Printer support for DC and CICS

With CICS and DC front-end systems, the back-end system can direct output to
3280-type printers connected to the front-end.

5.5.3.1 Defining and starting UCF printer support

To use UCF printer support, perform the following steps:

1. To invoke the UCF Print Control Task code a #UCFUFT macro that specifies a
task code. The same #UCFUFT macro can be used for UCF front-ends that
support both printer and nonprinter terminals.

2. Code one #UCFUTD macro for each printer connected to the front-end that is to
be available to the back-end system. Typically, #UCFUTD macros for printers are
coded following #UCFUTD macros for the other terminals connected to the

5-74 CA-IDMS System Operations

5.5 Printer support

front-end system. The #UCFUTD macro must specify a terminal identifier for
each printer.

3. For each printer defined in the front-end table, supply a corresponding definition
in the back-end system through the PTERM statement.

4. For CICS front-ends, link edit a user exit with the front-end module to handle
printer requests issued from the back-end system.

Starting UCF printer support: When the front-end TP monitor is running, UCF
printer support can be started from one of the monitor's terminals by entering the task
code that invokes the UCF front-end printer module. This task code is defined at
system generation time by the PTID parameter of the #UCFUFT macro.

5.5.3.2 Special CICS considerations

The remainder of this section discusses CICS UCF printer support, presenting the
following information:

■ Requirements for implementing CICS print support for UCF.

■ An example of how to implement CICS UCF print support. The example consists
of:

– Sample program UCFPRINT — A UCF print exit routine for CICS

– Sample program UCFDESPL — A program that retrieves data from a CICS
transient data queue and writes it to a 3280 printer

– Sample UCF system definition — Establishes printer support on a CICS
system; the UCF system uses the sample UCFPRINT and UCFDESPL
programs

Print exit support requirements: To use UCF print exit support, CICS users
must supply a user exit routine that is link edited with the UCF front-end printer
module. The exit routine is invoked by the UCF front-end print control task when
there is actual data to print.

The back-end formats a complete 3280 data stream and transmits it across the UCF
interface to a print task running under CICS. The print task running under CICS then
invokes the user-written routine, which routes the data stream to the specified
3280-type printer.

Note: When the actual WRITE request is issued, the ERASE option should be
specified.

��For information about coding user exit, see Chapter 7, “User Exits.”

Print exit routine requirements: The CICS UCF print exit routine:

■ Must be reentrant, written in macro-level Assembler language.

Chapter 5. UCF Operations 5-75

5.5 Printer support

■ Must have an entry point called UCFPRINT. When UCFPRINT is called, the
registers contain the following information:

– Register 1 contains the address of an 11-byte parameter list. (For the layout
of the parameter list, see the sample print exit below.)

– Register 2 contains the address of an 18-word save area.

– Register 12 contains the address of the command/level work area
(DFHEISTG).

– Register 14 contains the return address.

– Register 15 contains the address of UCFPRINT.

The exit must save and restore registers 2 through 13. On return from the exit,
register 15 should contain either a return code of 0 if no errors occurred or a nonzero
return code if errors occurred.

Sample program UCFPRINT: The example below shows the listing for program
UCFPRINT, a sample CICS UCF print exit.

Sample CICS UCF print exit routine (UCFPRINT)

UCFP TITLE 'SAMPLE PRINT EXIT FOR UCFCICS PROGRAM' �1/15/912

� UCFPRINT 1�:�8:38 �6/�9/86 �9/27/9�

���

� CA-IDMS PRODUCT OF COMPUTER ASSOCIATES INT. �8/9�

�

� THIS IS A SAMPLE UCF-CICS PRINTER EXIT. IT MAY BE ASSEMBLED AND

� LINKED IN WITH UCFCICS.

�

� ���NOTE��� THIS PROGRAM IS NOW IN COMMAND-LEVEL FORMAT.

� THE PARMLIST HAS THE ADDRESS OF DFHEISTG

�

� THIS PROGRAM IS CALLED WITH: (VIA BALR)

� R1 = ADDRESS OF PARAMETER LIST (SEE DSECT BELOW)

� R2 = ADDRESS OF SAVE AREA

� R14 = RETURN ADDRESS

� R15 = ADDRESS OF UCFPRINT

�

� THIS PROGRAM SHOULD RETURN:

� R15 = � IF THERE WERE NO PROBLEMS. NON-ZERO OTHERWISE.

�

� FOR CICS INSTALLATIONS WHICH ALREADY HAVE THEIR OWN STANDARD PRO-

� CEDURES FOR PRINTING DATA ON 328� PRINTERS, THIS PROGRAM WILL

� PROBABLY HAVE TO BE MODIFIED TO FIT IN WITH THOSE PROCEDURES.

�

� FOR INSTALLATIONS WHICH DO NOT ALREADY HAVE PRINT PROCEDURES, THIS

� PROGRAM MAY BE USED AS IS.

�

�

� ���BASIC PROGRAM LOGIC���

�

� THIS PROGRAM ASSUMES THAT THE CICS SYSTEM PROGRAMMER HAS DEFINED

� AN INTRA-PARTITION TRANSIENT DATA QUEUE FOR EACH OF HIS 328�S

� WHERE THE DESTID OF THE QUEUE IS THE SAME AS THE 328�'S TERMINAL

5-76 CA-IDMS System Operations

5.5 Printer support

� ID AND DESTFAC=TERMINAL, TRIGLEV=1, AND TRANSID=UCFD.

�

� THE FIRST TIME THE UCFCICS TASK CALLS THIS PROGRAM, THE PROGRAM

� ENQUEUES ON THE NAME OF THE 328�'S TRANSIENT DATA QUEUE. IF

� THE INSTALLATION HAS ANY OTHER TRANSACTIONS THAT WILL WRITE TO

� THIS QUEUE, THEY SHOULD ENQUEUE SIMILARLY TO AVOID INTERLEAVING

� LINES OF DIFFERENT REPORTS.

�

� UCFCICS CALLS THIS PROGRAM MULTIPLE TIMES, EACH TIME WITH A

� FULLY FORMATTED 328� DATASTREAM COMPLETE WITH WRITE CONTROL

� CHARACTER. THIS PROGRAM WRITES THAT DATA TO THE QUEUE AND EXITS.

�

� WHEN THE QUEUE IS WRITTEN TO, CICS WILL AUTOMATICALLY START UP

� TASK UCFD WHICH INVOKES PROGRAM UCFDESPL.

�

� UCFDESPL READS DATA FROM THE QUEUE AND WRITES IT TO THE PRINTER.

�

�

���

�

 EJECT

PARMS DSECT , ���PARAMETERS PASSED BY #UCFCICS

PTERMID DS CL4 TERMINAL ID OF PRINTER DATA IS TO GO TO

PDATA DS A ADDRESS OF DATA TO BE PRINTED

� NOTE: DATA WILL BE FULLY FORMATTED FOR A 328�.

� FIRST BYTE WILL BE A WRITE CONTROL CHARACTER

� AND DATA MAY CONTAIN NEW-LINE, FORM-FEED, END-

� OF-MESSAGE AND/OR START-BUFFER-ADDRESS ORDERS.

PLEN DS H LENGTH OF DATA TO BE PRINTED (MAY BE ZERO)

PFLAGS DS X

PFLFIRST EQU X'2�' THIS IS THE FIRST CALL TO UCFPRINT BY

� THIS SECONDARY PRINT TASK.

PFLLAST EQU X'4�' DATA IS THE LAST "LINE" OF A DC REPORT

� NOTE: A GIVEN SECONDARY PRINT TASK MAY PRINT

� SEVERAL REPORTS DURING ITS LIFE; THIS

� FLAG DOES NOT MEAN THAT THIS IS THE LAST

� CALL TO UCFPRINT.

 DS XL1 FILLER

EISTGA DS AL4 DFHEISTG ADDRESS

�

 EJECT

 #MOPT CSECT=UCF$PRNT,ENV=USER

 #ENTRY UCFPRINT

�

 USING �,R15

 STM R3,R14,�(R2) SAVE REGS

LR R8,R15 SET BASE REG

 USING UCFPRINT,R8

 DROP R15

�

LR R3,R1 BASE THE PARAMETER LIST

 USING PARMS,R3

L R12,EISTGA GET EISTG ADDRESS

 USING DFHEISTG,R12

�

TM PFLAGS,PFLFIRST IS THIS THE FIRST CALL TO UCFPRINT?

 BZ A2�� NO

 SPACE 2

���

Chapter 5. UCF Operations 5-77

5.5 Printer support

� A NEW LITTLE PRINT TASK IS JUST STARTING - ENQUEUE ON THE NAME

� OF THE PRINTER TO KEEP SOME OTHER TASK FROM INTERLEAVING ITS

� DATA WITH THE LINES OF THESE REPORTS.

���

�

EXEC CICS HANDLE CONDITION ERROR(ERREXIT) .

�

EXEC CICS ENQ RESOURCE(PTERMID) LENGTH(4) .

�

A2�� SR R15,R15 CLEAR RETURN CODE �86-�4-1115

LH R4,PLEN LENGTH OF DATA TO BE PRINTED

LTR R4,R4 IS THERE REALLY ANY DATA?

 BNP A3�� NO

 SPACE 2

���

� PUT THE PRINT DATA ON A TRANSIENT DATA QUEUE WITH THE SAME NAME AS

� THE PRINTER. THIS QUEUE SHOULD HAVE A TRIGGER LEVEL OF 1 WHICH

� WILL FIRE OFF A TASK TO GET THIS DATA FROM THE QUEUE AND ACTUALLY

� WRITE IT TO THE PRINTER

���

�

L R5,PDATA ADDRESS OF DATA TO BE PRINTED

SH R5,=H'4' BACK UP 4 FOR HEADER

 XC �(4,R5),�(R5) CLEAR HEADER

STH R4,�(R5) SET LENGTH IN HEADER

�

EXEC CICS HANDLE CONDITION ERROR(TDERR) .

�

EXEC CICS WRITEQ TD QUEUE(PTERMID) X

FROM(4(R5)) X

LENGTH(�(R5)) .

�

TDERR DS �H

 XR R15,R15

L R9,DFHEIBP GET EIB ADR

IC R15,EIBRCODE-DFHEIBLK(R9) GET RESPONSE

 B A3��

�

ERREXIT DS �H

LA R15,X'FF' SET BAD RC

 B A3��

�

A3�� LM R3,R14,�(R2) RESTORE CALLER'S REGISTERS

BR R14 RETURN TO UCFCICS

 SPACE 4

 LTORG

�

DFHEIBR EQU R9

DFHEIPLR EQU R12

 DFHEISTG

 DFHEIEND ,

 COPY DFHEIBLK

�

UCF$PRNT CSECT

 END UCFPRINT

5-78 CA-IDMS System Operations

5.5 Printer support

Sample program UCFDESPL: The example below shows the listing for program
UCFDESPL, a sample program that retrieves data from a CICS transient data queue
and writes it to a 3280 printer.

Sample program to retrieve data for printing (UCFDESPL)

DESP TITLE 'DESPOOL DATA AND WRITE TO PRINTER'

��

� CA-IDMS PRODUCT OF COMPUTER ASSOCIATES INT. �1/91 �

�--�

� SAMPLE PROGRAM FOR RETRIEVING DATA FROM A CICS TRANSIENT �

� DATA QUEUE AND WRITING IT TO A 328� PRINTER. �

� �

� THIS SAMPLE PROGRAM MAY BE USED IN CONJUNCTION WITH THE �

� UCFPRINT SAMPLE PROGRAM TO IMPLEMENT THE UCF-CICS PRINT�

� FACILITY. �

� �

� ���NOTE��� THIS PROGRAM IS NOW IN COMMAND-LEVEL FORMAT. �

� THE PARMLIST HAS THE ADDRESS OF DFHEISTG �

� �

� THE FOLLOWING MACROS SHOULD BE ADDED TO THE CICS GEN: �

� �

� DFHPPT TYPE=ENTRY,PROGRAM=UCFDESPL,PGMLANG=ASSEMBLER,�

� RES=NO,RELOAD=NO �

� �

� DFHPCT TYPE=ENTRY,TRANSID=UCFD,PROGRAM=UCFDESPL �

� �

� DFHDCT TYPE=INTRA,DESTFAC=TERMINAL,TRANSID=UCFD, �

� TRIGLEV=1,DESTID=XXXX �

� ��WHERE XXXX IS THE TERMINAL ID OF A 328� PRINTER���

� �

� �� NOTE �� A SEPARATE DFHDCT MACRO WILL IS NEEDED FOR EACH�

� 328� PRINTER DEFINED IN THE UCF FRONT-END TABLE�

� �

� THIS PROGRAM EXPECTS THE TRANSIENT DATA RECORDS TO BE �

� FULLY FORMATTED 328� DATA STREAMS COMPLETE WITH A WRITE �

� CONTROL CHARACTER AS THE FIRST CHARACTER. �

� �

� THIS PROGRAM WILL ABEND WITH CODE 'UCFD' IF THERE IS ANY�

� ERROR WHEN IT TRIES TO RETRIEVE DATA FROM THE TRANSIENT �

� DATA QUEUE. �

� �

��

 EJECT

 DFHEISTG

RECL DS H RECORD LENGTH

 DFHEIEND ,

�

 EJECT

 #MOPT CSECT=UCF$DSPL,ENV=USER

 #ENTRY UCFDESPL

�

UCF$DSPL DFHEIENT CODEREG=(R8),DATAREG=(R12),EIBREG=(R11)

�

���

� THIS TASK IS STARTED WHEN THERE IS DATA ON THE TRANSIENT DATA QUEUE

� WITH THE SAME NAME AS THIS TERMINAL TO BE PRINTED TO THE TERMINAL

Chapter 5. UCF Operations 5-79

5.5 Printer support

���

�

EXEC CICS HANDLE CONDITION ERROR(UCFDABND) X

 QZERO(B9��) .

�

B2�� DS �H

 MVC RECL,=H'�' LENGTH UNKNOWN

�

EXEC CICS READQ TD QUEUE(EIBTRMID) X

SET (R3) X

LENGTH(RECL) .

�

 LH R1,RECL GET LENGTH

BCTR R1,� CUT OFF WCC CHAR

STH R1,RECL SET WRITE LENGTH

�

EXEC CICS SEND FROM(1(R3)) LENGTH(RECL) X

CTLCHAR(�(R3)) ERASE WAIT .

�

B B2�� READ NEXT DCT RECORD

�

UCFDABND DS �H

�

EXEC CICS ABEND ABCODE('UCFD') CANCEL .

�

���

� NOTHING MORE ON QUEUE TO PRINT; TERMINATE TASK.

���

�

B9�� DS �H

 DFHEIRET

�

 LTORG

 END UCFDESPL

Sample UCF system definition: The following examples show statements that
define UCF with printer support on a CICS system. The CICS system has 12
terminals and 3 printers. The sample system uses the sample UCFPRINT and
UCFDESPL programs. The sample system is defined as follows:

■ The UCF front-end table that defines devices to UCF.

■ System generation LINE and PTERM statements that define devices to DC/UCF.

■ Related CICS definitions.

Notice that, for print devices, the same print-device names must be specified in the
#UCFUTD macros that define the print devices (PRTA, PRTB, and PRTC in this
example), in the PTERM statements that define the printers to DC/UCF, and in CICS
DFHDCT macros that define the printers to CICS.

5-80 CA-IDMS System Operations

5.5 Printer support

Sample UCF front-end table definition

 CICSFET #UCFUFT SYSTEM=CICS, X

NTID=DBDC, � DEDICATED TASK ID X

PTID=UCFP � PRINT TASK ID

 � DEFINE INTERACTIVE TERMINALS TO UCF

 #UCFUTD TERM=T��1,TYPE=T3277,MODEL=2,PRTCLS=1�

 #UCFUTD TERM=T��2,TYPE=T3277,MODEL=2,PRTCLS=1�

 #UCFUTD TERM=T��3,TYPE=T3277,MODEL=2,PRTCLS=2�

 #UCFUTD TERM=T��4,TYPE=T3277,MODEL=2,PRTCLS=3�

 #UCFUTD TERM=T��5,TYPE=T3277,MODEL=2,PRTCLS=2�

 #UCFUTD TERM=T��6,TYPE=T3277,MODEL=2,PRTCLS=1�

 #UCFUTD TERM=T��7,TYPE=T3277,MODEL=2,PRTCLS=3�

 #UCFUTD TERM=T��8,TYPE=T3277,MODEL=2,PRTCLS=3�

 #UCFUTD TERM=T��9,TYPE=T3277,MODEL=2,PRTCLS=3�

 #UCFUTD TERM=T�1�,TYPE=T3277,MODEL=2,PRTCLS=1�

 #UCFUTD TERM=T�11,TYPE=T3277,MODEL=2,PRTCLS=2�

 #UCFUTD TERM=T�12,TYPE=T3277,MODEL=2,PRTCLS=2�

 � DEFINE 328� PRINTERS TO UCF

 #UCFUTD TERM=PRTA,TYPE=T328�,FORMFD=NO

 #UCFUTD TERM=PRTB,TYPE=T328�,FORMFD=YES

 #UCFUTD TERM=PRTC,TYPE=T328�,FORMFD=YES

 � END OF front-end TABLE

 #UCFDEND

Chapter 5. UCF Operations 5-81

5.5 Printer support

Sample DC/UCF system generation input

LINE UCF ENABLED TYPE IS UCFLINE MODULE IS RHDCFSTB.

PTERM UCF�1 ENABLED TYPE IS UCFTERM IN LINE UCF.

 LTERM UCF�1.

PTERM UCF�2 ENABLED TYPE IS UCFTERM IN LINE UCF.

 LTERM UCF�2.

PTERM UCF�3 ENABLED TYPE IS UCFTERM IN LINE UCF.

 LTERM UCF�3.

PTERM UCF�4 ENABLED TYPE IS UCFTERM IN LINE UCF.

 LTERM UCF�4.

PTERM UCF�5 ENABLED TYPE IS UCFTERM IN LINE UCF.

 LTERM UCF�5.

PTERM UCF�6 ENABLED TYPE IS UCFTERM IN LINE UCF.

 LTERM UCF�6.

PTERM UCF�7 ENABLED TYPE IS UCFTERM IN LINE UCF.

 LTERM UCF�7.

PTERM UCF�8 ENABLED TYPE IS UCFTERM IN LINE UCF.

 LTERM UCF�8.

PTERM UCF�9 ENABLED TYPE IS UCFTERM IN LINE UCF.

 LTERM UCF�9.

PTERM UCF1� ENABLED TYPE IS UCFTERM IN LINE UCF.

 LTERM UCF1�.

PTERM UCF11 ENABLED TYPE IS BULK IN LINE UCF.

 LTERM UCF11.

PTERM UCF12 ENABLED TYPE IS BULK IN LINE UCF.

 LTERM UCF12.

 � UCF PRINTER PTERMS

PTERM UCFPRTA ENABLED TYPE IS UCFTERM IN LINE UCF NAME=PRTA.

LTERM UCFPRTA PRINTER CLASS = (1�,11,12,13,14).

PTERM UCFPRTB ENABLED TYPE IS UCFTERM IN LINE UCF NAME=PRTB.

LTERM UCFPRTB PRINTER CLASS = (2�,21,22,23,24).

PTERM UCFPRTC ENABLED TYPE IS UCFTERM IN LINE UCF NAME=PRTC.

LTERM UCFPRTC PRINTER CLASS = (3�,31,32,33,34).

5-82 CA-IDMS System Operations

5.5 Printer support

Sample CICS generation input

 � PROGRAM DEFINITION

DFHPPT TYPE=ENTRY,PROGRAM=UCFCICS, �UCF FRONT-END PROGRAM

 PGMLANG=ASSEMBLER,RES=NO,RELOAD=NO

DFHPPT TYPE=ENTRY,PROGRAM=UCFDESPL, �PRINT DESPOOL PROGRAM

 PGMLANG=ASSEMBLER,RES=NO,RELOAD=NO

 � TRANSACTION DEFINITION

DFHPCT TYPE=ENTRY,TRANSID=DBDC, �DEDICATED TASK ID

 PROGRAM=UCFCICS,TWASIZE=4��

DFHPCT TYPE=ENTRY,TRANSID=UCFP, �PRINT TASK ID

 PROGRAM=UCFCICS,TWASIZE=4��

DFHPCT TYPE=ENTRY,TRANSID=IDD, �INTERMITTENT TASK ID

 PROGRAM=UCFCICS,TWASIZE=4��

DFHPCT TYPE=ENTRY,TRANSID=OLM, �INTERMITTENT TASK ID

 PROGRAM=UCFCICS,TWASIZE=4��

DFHPCT TYPE=ENTRY,TRANSID=ADSG, �INTERMITTENT TASK ID

 PROGRAM=UCFCICS,TWASIZE=4��

DFHPCT TYPE=ENTRY,TRANSID=UCFD, �PRINT DESPOOL TASK

 PROGRAM=UCFDESPL

 � INTRAPARTITION QUEUE DEFINITION

 DFHDCT TYPE=INTRA,DESTID=PRTA,

 DESTFAC=TERMINAL,TRANSID=UCFD,TRIGLEV=1

 DFHDCT TYPE=INTRA,DESTID=PRTB,

 DESTFAC=TERMINAL,TRANSID=UCFD,TRIGLEV=1

 DFHDCT TYPE=INTRA,DESTID=PRTC,

 DESTFAC=TERMINAL,TRANSID=UCFD,TRIGLEV=1

Chapter 5. UCF Operations 5-83

5-84 CA-IDMS System Operations

 Chapter 6. TP-Monitor Considerations

6.1 Overview . 6-3
6.2 CICS systems . 6-4

6.2.1 Standard CICS interface . 6-4
6.2.1.1 CICSOPT . 6-5
6.2.1.2 IDMSINTC . 6-5
6.2.1.3 IDMSCINT . 6-15

6.2.2 INTCR141 . 6-18
6.2.3 IDMSINTL and IDMSCINL CICS interface macros 6-26

6.2.3.1 IDMSINTL . 6-26
6.2.3.2 IDMSCINL . 6-33

6.2.4 DC/UCF execution mode in the CICS environment 6-36
6.2.5 Running multiple CICS or DC/UCF systems 6-37
6.2.6 Components of the CICS and DC/UCF environment 6-37
6.2.7 CICS extended addressing considerations 6-38
6.2.8 What happens when a CA-IDMS instruction is executed 6-38
6.2.9 Using the various CICS interfaces . 6-39
6.2.10 CICS storage protection with IDMSINTC and IDMSINTL 6-40

6.2.10.1 CICS setup procedures . 6-40
6.2.10.2 CA-IDMS/DC/UCF setup procedures 6-40

6.3 UTM Systems . 6-41
6.3.1 DC/UCF execution modes in the UTM environment 6-41
6.3.2 IDMSTCM module . 6-41

Chapter 6. TP-Monitor Considerations 6-1

6-2 CA-IDMS System Operations

6.1 Overview

 6.1 Overview

DC/UCF supports the following TP-monitors: CICS, CMS (VM/ESA), CA-IDMS DC,
TIAM (BS2000/OSD), IMS-DC, TSO, UTM (BS2000/OSD), batch, and AIM
(MSP/EX). When using any of these TP monitors, you can execute programs that use
CA-IDMS central version database services.

Each CA-IDMS program that executes under one of these TP monitors must be link
edited with the appropriate program interface module. To execute CA-IDMS central
version programs under TP monitors other than CICS or UTM, use the standard
CA-IDMS batch interface or a custom TP-monitor interface. This chapter describes
the interfaces you need for CICS and UTM:

DC/UCF provides the necessary interface modules to support CA-IDMS programs
executing under these TP monitors:

TP monitor Program interface TP-monitor interface

CICS IDMSCINT module
IDMSINTC module

IDMSCINT module
IDMSINTC module

UTM IDMSTCM module IDMSTCM module

Chapter 6. TP-Monitor Considerations 6-3

6.2 CICS systems

 6.2 CICS systems

This section discusses the following topics related to how CICS and DC/UCF interact:

■ The standard CICS interface

■ Additional CICS interface macro: INTCR141

■ Additional CICS interface macros: IDMSINTL and IDMSCINL

■ DC/UCF execution mode in the CICS environment

■ Considerations for running multiple CICS or DC/UCF systems

■ The components of the CICS and DC/UCF environment

■ What happens when a CA-IDMS database instruction is executed

6.2.1 Standard CICS interface

The CA-IDMS CICS interface program is installed and configured during installation.
It is composed of from three (3) to six (6) precompiled objects, depending on the
options selected, as well as an options table, which is compiled on site during the
installation process.

■ The CICSOPT macro is compiled during installation and provides a table of your
selected options.

■ The INTC0410 module provides the main CA-IDMS CICS interface module, and
is produced by compiling the IDMSINTC macro with:

– CICS 4.1.0 for OS/390 environments
– CICS/ESA 2.4 for VSE/ESA environments

■ The ESCxn410 modules provide the support for any desired Transparency
products, and are produced by compiling the IDMSESC macro with:

– CICS 4.1.0 for OS/390 environments
– CICS/ESA 2.4 for VSE/ESA environments

for each of the Transparency products.

■ IDMSTRUE provides the task related user exit used by the CA-IDMS CICS
interface module.

These objects are then linked together providing the CICS interface module
IDMSINTC, which is supported through the standard APAR process for the majority
of clients. The load module name is no longer significant; it is automatically detected
and used at run-time to establish the TRUE exit.

The macros IDMSINTC and IDMSESC both invoke the CICSOPT macro internally
and will not be discussed further. They are provided for use by those client sites that
believe they have extensive enough unsupported modifications to the interface that
they choose to bypass the benefits of a standardized interface and SMP/E support.

6-4 CA-IDMS System Operations

6.2 CICS systems

 6.2.1.1 CICSOPT

The functions performed by the IDMSINTC program vary based upon whether a
CA-IDMS SVC is specified in CICSOPT:

■ If a CA-IDMS SVC is specified, IDMSINTC performs the following functions
when CICS is started up:

– Stores the address of the IDMSINTC entry-point address table in the CWA

– Sets up the CA-IDMS run time environment

– Returns control to CICS

■ If a CA-IDMS SVC is not specified, IDMSINTC performs the following functions
when CICS is started up:

– Opens and reads the SYSCTL, and optionally up to nine (9) additional
SYSCTL files to obtain the necessary central version information (for
example, the CVNUMBER value of the DC/UCF systems and the CA- IDMS
SVC numbers)

– Stores the address of the IDMSINTC entry-point address table in the CWA

– Sets up the CA-IDMS run time environment

– Returns control to CICS

 6.2.1.2 IDMSINTC

Automatically starting IDMSINTC: It is normally useful to have the IDMSINTC
interface module started automatically at CICS startup time. To do this:

1. Code the following entry for IDMSINTC in the program list table. The
IDMSINTC entry should follow the one for DFHDELIM so that IDMSINTC will
be executed during phase 3 of CICS initialization.

DFHPLT TYPE=ENTRY

 PROGRAM=IDMSINTC

2. Enter the name of the program list table (PLTPI) in the system initialization table.

If you don't have IDMSINTC started as a function of the CICS startup routine, be sure
to execute the IDMSINTC interface module before attempting communication with
DC/UCF at run time. To execute the IDMSINTC module, enter a TRANSID that
corresponds to the IDMSINTC module in the PCT tables.

To start up IDMSINTC automatically after control is given to CICS, code the
following operands on the CICSOPT macro:

PLT=NO,

TRANSID=task-code

Perform steps 1 and 2 above and define task-code in the program control table (PCT)
to invoke IDMSINTC.

��For more information about the PCT table, see Chapter 5, “UCF Operations.”

Chapter 6. TP-Monitor Considerations 6-5

6.2 CICS systems

Runtime processing: IDMSINTC must be resident in CICS and must be executed
before the execution of any CA-IDMS database application for that run of CICS.
Control passes from IDMSCINT in the application program to the main entry point in
IDMSINTC, to notify DC/UCF to perform a service requested by the CICS user
program.

IDMSINTC performs the following functions:

■ Allocates dynamic storage required by the CA-IDMS interface to service the
request.

■ Enables the recovery exit program for the current CICS task. The exit program,
IDMSTRUE, performs the necessary cleanup when the CICS task terminates. See
"IDMSTRUE exit" below for more information about IDMSTRUE.

■ Passes control to IDMS, which sends the request through the CA-IDMS SVC to
the DC/UCF region. The CA-IDMS interface implicitly issues a CICS WAIT
command, which places the current task in a wait state until the request is
serviced.

■ Passes the requested database record and/or error status to the user program.

��See 6.2.8, “What happens when a CA-IDMS instruction is executed” on page 6-38
blow for more information about run-time processing.

IDMSTRUE exit: IDMSTRUE is a task termination exit, which is defined to CICS
as a task-related user exit (TRUE).

IDMSTRUE features include:

■ Compatibility with CICS version 1.7 and above

■ Standard CICS facilities (that is, it doesn't modify CICS control programs)

■ Minimal overhead; IDMSTRUE gets control only for tasks performing CA-IDMS
database calls.

At task termination, IDMSTRUE detects:

■ Transactions still active at abnormal task termination. When IDMSTRUE detects
this condition, database updates associated with the transaction are backed out
immediately. This conserves the resources that would be held until the IDMS
EXTERNAL WAIT INTERVAL expires or the DC/UCF system is recycled.

To monitor transactions active at abnormal task termination, use either the
DFHPEP examiner or the SCP user-exit examiner.

■ Transactions still active at normal task termination.

This condition usually indicates a program logic error. That is, the program
issued a BIND but never issued a FINISH. When IDMSTRUE detects this
condition, database updates associated with the BIND are backed out immediately.
This conserves the resources that would be held until the IDMS EXTERNAL
WAIT INTERVAL expires or the DC/UCF system is recycled.

6-6 CA-IDMS System Operations

6.2 CICS systems

Note: Transparency applications do not explicitly issue the BIND RUN-UNIT and
FINISH. Rather, a Transparency transaction's first request results in an
implicit BIND RUN-UNIT. Consequently, you must use IDMSTRUE to issue
the implicit FINISH when the task terminates.

The TS queue SET option: Use of the TS queue SET option severely restricts
which CICS facilities programs in the CICS transaction thread are permitted for use.
IDMSINTC removes all use of TS queues.

CAUTION:
Avoid this option whenever possible.

��See the description of TIMEOUT under "CICSOPT parameters" below.

 CICSOPT syntax

��─────────────────── CICSOPT CWADISP=cwa-intc-address-displacement ──────────�

 �─ ,OPSYS=operating-system ──�

 �─┬───────────────────────────┬──�

└─ ,CVNUM= ─┬─ cv-number ─┬─┘

└─ � ← ───────┘

 �─┬──────────────────────────┬───�

└─ ,SVC= ─┬─ svc-number ─┬─┘

└─ NO ← ───────┘

 �─┬───────────────────────┬──�

└─ ,DSECT= ─┬─ YES ← ─┬─┘

└─ NO ────┘

 �─┬───────────────────────┬──�

└─ ,ESCDLI= ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬───────────────────────┬──�

└─ ,HLPI= ───┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬──────────────────┬───�

└─ ,SYSCTL=ddname ─┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,MAXCVNO= ─┬─ number-of-sysctl ──┬─┘

└─ � ← ───────────────┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,USERCNT= ─┬─ maxusers ──────────┬─┘

└─ 1�� ← ─────────────┘

 �─┬──────────────────────────────┬───�

└─ ,TPNAME=system-name ────────┘

Chapter 6. TP-Monitor Considerations 6-7

6.2 CICS systems

 �─┬───┬──────────────────────────────�

└─ ,NODENAM=(nodename ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 �─┬──┬───────────────────────────────�

└─ ,DBNAME=(db-name ─┬─ ,ALWAYS ────┬──) ─┘

└─ ,DEFAULT ← ─┘

 �─┬───────────────────┬──�

└─ ,XA= ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬───────────────────────────────────┬──────────────────────────────────────�

└─ ,ERRDCT= ─┬─ destination-name ─┬─┘

└─ CSMT ← ───────────┘

 �─┬────────────────────┬───�

└─ ,PLT= ─┬─ YES ← ─┬┘

└─ NO ────┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,TIMEOUT= ─┬─ number-of-minutes ─┬─┘

├─ � ← ───────────────┤

└─ IMMEDIATE ─────────┘

 �─┬──────────────────────┬───�

└─ ,TRANSID=task-code ─┘

 �─┬───────────────────────┬──�

└─ ,OPTIXIT= ─┬─ YES ──┬┘

└─ NO ← ─┘

 �─┬────────────────────────────┬───�

└─ ,DICTNAM=dictionary-name ─┘

 �─┬────────────────────────────┬───�

└─ ,DICTNOD=dictionary-node ─┘

 �─┬────────────────────────┬───��

└─ ,MACLVL= ─┬─ YES ← ─┬─┘

└─ NO ────┘

The following parameters are for use in an CICSOPT tailored for SQL:

 DICTNAM
 DICTNOD

 CICSOPT parameters

CWADISP=
Identifies the displacement within the CICS CWA of a fullword to hold the
address of the CICSOPT module. For cwa-intcddress-displacement, specify either
a number of bytes (maximum value is 3584) or the name of a field within the
CSA copy book.

6-8 CA-IDMS System Operations

6.2 CICS systems

Considerations: The specified field must be on a fullword boundary within the
CWA and must be the same value given to the CWADISP parameter of the
IDMSCINT macro.

OPSYS=
Identifies the operating system under which the DC/UCF system runs.

Valid values for operating-system:

 ■ OS390
 ■ VSE

CVNUM=
Identifies the number of the DC/UCF system to be accessed from CICS. For
cv-number, specify the number used for the CVNUM parameter in the CV-gen.

SVC=
Identifies the number of the CA-IDMS SVC. For svc-number, specify a value as
follows:

■ If no SVC is being used, or if using SYSCTL, specify NO.

■ If an SVC is being used by the DC/UCF system, specify the SVC number.

The SVC parameter is required if no SYSCTL file is specified.

DSECT=YES/NO
Specifies whether a DSECT only version of the CICSOPT macro is generated.

The parameter defaults to YES. However to generate a working CICS interface
module, the parameter DSECT=NO must be specified in the assembly of
CICSOPT.

ESCDLI=
Is never explicitly specified. CDMSIJMP automatically sets this parameter to
YES if installing CA-IDMS/DLI Transparency and the CICS interface
(INT-CICS).

HLPI=
Specifies whether or not HLPI support is required for DL1.

SYSCTL=
Identifies the ddname of the file containing DC/UCF system control information.

If no SVC (described above) is specified, the SYSCTL parameter is required.
Likewise, if SYSCTL is desired, the SVC parameter must be NO (SVC=NO).

MAXCVNO=
The number of extra SYSCTL DD cards are determined by the value specified for
this operand. Valid values are in the range 0 through 9. The additional SYSCTL
DDNAMES are derived by replacing either the eighth character of the SYSCTL
ddname, or the leftmost blank character, with the numbers 1 through 9, as
necessary.

Chapter 6. TP-Monitor Considerations 6-9

6.2 CICS systems

USERCNT=
Specifies the maximum number of concurrent user sessions to CA-IDMS. It
includes all active sessions, all suspended sessions, and all users that have not yet
timed out. Valid values range from 1 to 100000.

TPNAME=
Specifies the name by which DC/UCF will identify all tasks running under this
CICS system. For system-name, specify a four-character name.

This name forms the first part of the local transaction ID for database requests. It
also forms the first four characters of the front end system ID for external request
units. "BULK" is appended to system-name to form the front-end system ID.
The front-end system ID is used for several things:

■ Determines the packet size for communications

■ Determines the maximum number of simultaneous requests from this CICS
system to CA-IDMS.

■ May also be used as an alternate task code for controlling external request
unit processing.

If this parameter is omitted, it will default to the CICS sysid as defined during the
CICS start-up.

NODENAM=
Identifies a system defined to the DC/UCF communications network to be
contained in the CICSOPT module and the conditions under which programs
signing on to the DC/UCF system will be directed to the named node for
execution.

For nodename, specify the one- to eight-character name of a remote system. If
the node name is not specified, the DC/UCF obtains the appropriate node name
from the application program or from the SYSCTL file (OS/390 only).

ALWAYS
Indicates that nodename is to override any node named by the program.
Requests from programs signing on to DC/UCF are always directed to the
named node regardless of node name specifications made by the program.

DEFAULT
Indicates that requests from programs signing on to DC/UCF are to be
directed to the named node only if the program does not name a node.

Note: Under OS/390 and VSE/ESA, SYSCTL node name specifications can
override CICSOPT and program specifications.

DBNAME=
Identifies the database (or data dictionary) name to be contained in the CICSOPT
module. This parameter also identifies the conditions under which programs
signing on to the DC/UCF system access the named database.

For db-name, specify the name of the database that programs are to access when
running under the DC/UCF system. If the database name is not specified,
DC/UCF obtains the appropriate database name from the application program or
from the SYSCTL file (OS/390 only).

6-10 CA-IDMS System Operations

6.2 CICS systems

ALWAYS
Indicates that db-name is to override any database named by the program.
Programs signing on to DC/UCF always execute against the named database
regardless of database name specifications made by the program.

DEFAULT
Indicates that programs signing on to DC/UCF are to execute against the
named database only if the program does not name a database.

Note: Under OS/390 and VSE/ESA, SYSCTL database name specifications
can override CICSOPT and program specifications.

XA=NO/YES
Designates whether the operating system is XA (YES) or not (NO). If you
specify YES, CICSOPT allocates the primary user-oriented storage in the 31-bit
storage area. This storage is retained across all successful task terminations for
terminal-associated tasks, and this storage is reused on the next DC/UCF request.
The storage is freed for any failing or non-terminal task.

MACLVL=YES/NO
Indicates whether applications using the CICS macro-level interface are supported
by this CA-IDMS interface. The default is MACLVL=YES.

CAUTION:
If a macro-level application attempts communications with a CA-IDMS
interface assembled with MACLVL=NO, the results are unpredictable.

ERRDCT=
Identifies the CICS transient data destination to be used as the target for error
messages produced by CICSOPT and IDMSTRUE. The default destination-name
is CSMT. Use another destination if you want to rout CA-IDMS error messages
to another CICS destination. The DCT entry should be defined with a logical
record length of at least 130 characters.

PLT=YES/NO
Indicates how CICSOPT starts up. YES indicates that CICSOPT can start up as a
PLT-invoked program. NO indicates CICSOPT always starts up as a user task
once CICS start up is complete.

TIMEOUT
Indicates how long a block of storage will be held after termination of a CICS
task that utilizes CA-IDMS services. This storage block is acquired with a CICS
GETMAIN and is initialzed when a terminal makes a request for IDMS services.

Valid values are 1 through 10, 0, and IMMEDIATE. A value between 1 and 10
indicates that the storage will be held for the specified number of minutes. If
another CA-IDMS request is made within that time, the same block of storage will
be utilized. If the storage is not used within that time, it will be freed. The next
request for CA-IDMS services results in the acquistion and initialization of a new
storage block.

A value of 0 (the default) indicates that once a block of storage is acquired for a
particular CICS terminal that storage will not be freed until either of these things
happen:

Chapter 6. TP-Monitor Considerations 6-11

6.2 CICS systems

■ The user signs off the terminal

■ A task using that storage block aborts

A value of IMMEDIATE indicates that the storage will be freed at task
termination of the task that acquired the storage. If IMMEDIATE is coded, a new
storage block is acquired and initialized for each CICS task that requests
CA-IDMS services.

Notes:

The following considerations apply to the TIMEOUT parmeter:

1. TIMEOUT=IMMEDIATE must be specified for any IDMSINTC module that
runs in a CICS Application Owning Region (AOR) and which is invoked
from terminals in a separate Terminal Owning Region (TOR).

2. Since several thousand bytes are held by each terminal, a non-IMMEDIATE
value may result in a large amount of storage being held for terminals with no
active tasks.

3. A TIMEOUT value of 1 through 10 MUST NOT be coded if any application
program using IDMSINTC services also uses READQ TS ... with the SET
option.

4. If the INTCID parameter and/or the NTID parameter of the #UCFCICZ macro
are not coded correctly or if the UCFCICZ exit is not driven for some other
reason, the IDMS storage block may not be freed when a CICS user is logged
off a terminal. The next user who signs on that terminal may acquire that
storage block. This can result in S019 or other S0nn abends or other
application problems. If such problems are encountered, use
TIMEOUT=IMMEDIATE.

TRANSID=
Identifies the transaction coded in the program control table (PCT) as invoking
CICSOPT. Task-code must be the name of a task defined in the PCT table.

��For more information about the PCT table, see Chapter 5, “UCF Operations.”

OPTIXIT=YES/NO
Indicates whether CICS transactions can modify the IDMSOPTI structure
dynamically so that only the task thread is affected by the changes. YES indicates
that the IDMSOPTI structure can be modified dynamically.

CICSOPT copies the static IDMSOPTI structure into dynamic storage and passes
it to the user routine, which may alter it based on site-specific rules.

��For more information about the OPTIXIT user exit, refer to 7.3.2, “OPTIXIT”
on page 7-30.

DICTNAM=
Sets the default SQL catalog. In general, existing native DML will not behave in
the desired manner when you use this parameter.

DICTNOD=
Sets the default SQL catalog. In general, existing native DML will not behave in
the desired manner when you use this parameter.

6-12 CA-IDMS System Operations

6.2 CICS systems

Assembling CICSOPTS and link editing IDMSINTC: JCL to assemble
CICSOPTS and link edit the IDMSINTC module appears below for OS/390 and
VSE/ESA operating systems.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 CICSOPTS assembly and IDMSINTC link edit

//�--

//� ASSEMBLER ASMA9� JOB STREAM

//�--

//ASMSTEP EXEC PGM=ASMA9�,

// PARM='ALIGN,XREF,PUNCH,NODECK',

// REGION=2�48K

//SYSLIB DD DSN=idms.maclib,DISP=SHR

// DD DSN=idms.srclib,DISP=SHR

// DD DSN=cics.maclib,DISP=SHR

// DD DSN=os39�.maclib,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT2 DD DSN=&&SYSUT2,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT3 DD DSN=&&SYSUT3,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSPRINT DD SYSOUT=�

//SYSPUNCH DD DSN=&&OBJECT,

 DISP=(NEW,PASS),

 UNIT=SYSDA,

 SPACE=(8�,(5��,1���))

//SYSIN DD �

CICSOPT input parameters

 END

//�--

//� LINK IEWL

//�--

//LINK EXEC PGM=IEWL,

// PARM='LET,LIST,XREF,RENT',

// REGION=128K,

// COND=(8,LT,ASMSTEP)

//SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=�

//SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,

// SPACE=(64��,(8�)),

// DISP=(NEW,PASS)

//IN1 DD DSN=idms.distload,DISP=SHR

//IN2 DD DSN=cics.loadlib,DISP=SHR

//IN3 DD DSN=&&OBJECT,DISP=(OLD,DELETE)

//SYSLIN DD DDNAME=SYSIN

//SYSIN DD �

 ORDER DFHEAI

 INCLUDE IN2(DFHEAI)

 INCLUDE IN3

 INCLUDE IN1(INTC�41�)

 INCLUDE IN1(IDMSTRUE)

 INCLUDE IN1(IDMS)

 INCLUDE IN2(DFHEAIO)

 INCLUDE IN1(ESCD�41�) ; Remove if DL/I Transparency is not desired

 INCLUDE IN1(ESCT�41�) ; Remove if TOTAL Transparency is not desired

Chapter 6. TP-Monitor Considerations 6-13

6.2 CICS systems

 INCLUDE IN1(ESCV�41�) ; Remove if VSAM Transparency is not desired

 ENTRY STARTUP

 MODE AMODE(31),RMODE(24)

 NAME IDMSINTC(R)

/�

VSE/ESA CICSOPTS assembly and IDMSINTC link edit

// DLBL idmslib,

// EXTENT ,nnnnnn

// LIBDEF �,SEARCH=(idmslib.sublib,cicslib.sublib)

// LIBDEF PHASE,CATALOG=idmslib.sublib

// OPTION CATAL

 PHASE IDMSINTC,�

 INCLUDE DFHEAI

 INCLUDE INTC�41�

 INCLUDE IDMSTRUE

INCLUDE ESCD�41� ; Remove if DL/I Transparency is not desired

INCLUDE ESCT�41� ; Remove if TOTAL Transparency is not desired

INCLUDE ESCV�41� ; Remove if VSAM Transparency is not desired

// EXEC ASMA9�,SIZE=128K

CICSOPT input parameters

 END

/�

 INCLUDE DFHEAIO

 ENTRY STARTUP

// EXEC LNKEDT,SIZE=128K

/�

Note: The modules must be included in the specified order or future maintenance
may not verify correctly.

Item Description

cics.loadlib data set name of the CICS load library

cics.maclib data set name of the CICS macro library

idms.distload data set name of the CA-IDMS SMP/E distribution load
library

idms.loadlib data set name of the CA-IDMS load library

idms.maclib data set name of the CA-IDMS macro library

idms.srclib data set name of the CA-IDMS source library

os39�.maclib data set name of the OS/390 system macro library

6-14 CA-IDMS System Operations

6.2 CICS systems

Note: The CICSOPT macro and copy books must be accessible from the assigned
source statement library.

Item Description

cicslib.sublib name of the sublibrary within the library containing
CICS modules

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

nnnnnn volume serial identifier of appropriate disk volume

 6.2.1.3 IDMSCINT

You generate IDMSCINT at DC/UCF installation time. IDMSCINT must be link
edited with each CICS user program that accesses DC/UCF (including Assembler
modules). IDMSCINT passes the entry point address to IDMSINTC from the CWA
and passes control to IDMSINTC. The module generated by the IDMSCINT macro is
fully reentrant.

��For more information about run-time events, see 6.2.8, “What happens when a
CA-IDMS instruction is executed” on page 6-38.

To prepare an IDMSCINT macro, use the syntax shown below. If both the
command-level and the macro level interfaces are being used, prepare separate
IDMSCINT modules with distinct names for each interface.

 IDMSCINT syntax

Chapter 6. TP-Monitor Considerations 6-15

6.2 CICS systems

��─┬───────────────┬─ IDMSCINT CWADISP=cwa-intc-address-displacement ─────────�

├─ module-name ─┤

└─ IDMSCINT ← ──┘

 �─┬────────────────────────────────┬───�

└─ ,EP1=first-entry-point-label ─┘

 �─┬─────────────────────────────────┬──�

└─ ,EP2=second-entry-point-label ─┘

 �─┬──────────────────────┬───�

└─ ,EXEC= ─┬─ YES ← ─┬─┘

└─ NO ────┘

 �─┬────────────────────┬───�

└─ ,SQL= ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬─────────────────────┬──�

└─ ,DML= ─┬─ YES ← ─┬─┘

└─ NO ────┘

 �─┬────────────────────────┬───��

└─ ,AUTOCMT= ─┬─ YES ──┬─┘

└─ NO ← ─┘

 IDMSCINT parameters

module-name
Identifies the CSECT name of the generated module.

CWADISP=
Identifies the displacement within the CICS CWA of a fullword that holds the
address of the IDMSINTC module. For cwa-intcddress-displacement, specify the
same value given to the CWADISP operand of the IDMSINTC macro.

EP1=
Identifies the name of the first entry point in the generated module. For
first-entry-point-label, specify the name of the first entry point. The default value
is either the value given to module-name above or IDMSCINT if module-name is
not specified.

EP2
Identifies the name of the second entry point in the generated module. For
second-entry-point-label, specify the name of the second entry point.

Considerations:

■ A second entry point is present only if the EXEC parameter described below
specifies NO. In this case, if EP2 is not specified, the default value is
IDMSINC2.

■ If the EXEC parameter is coded as YES, then no second entry point is
generated, and EP2 should not be specified.

EXEC=YES/NO
Indicates whether the IDMSCINT module being generated is to be used with the
CICS command-level interface.

6-16 CA-IDMS System Operations

6.2 CICS systems

YES
Specify YES to indicate that the command-level interface is in use. YES is
the default.

If EXEC=YES, then name the module IDMSCINT to allow it to be
autolinked with applications.

NO
Specify NO to indicate that the command-level interface is not in use.
EXEC=NO must be specified if installing the CA-IDMS DMS interface.

If EXEC=NO, then name the module IDMSINC1 to allow the use of autolink.

SQL=YES/NO
Determines whether the program linked with IDMSCINT can (YES) or cannot
(NO) issue SQL DML statements. NO is the default.

DML=YES/NO
Determines whether the program linked with IDMSCINT can (YES) or cannot
(NO) issue non-SQL DML statements. YES is the default.

AUTOCMT=YES/NO
Specifies whether IDMSTRUE intercepts a CICS SYNCPOINT or SYNCPOINT
ROLLBACK command issued by an application and translates it to an IDMS
FINISH TASK or ROLLBACK TASK command, respectively. YES instructs
IDMSTRUE to intercept the SYNCPOINT and SYNCPOINT ROLLBACK
commands. At normal task termination IDMSTRUE issues a FINISH TASK
command on behalf of the application; for abnormal termination, it issues a
ROLLBACK TASK command. This option applies to applications coded for
Release 12.0 and above.

NO, the default, means IDMSTRUE does not intercept the SYNCPOINT
commands. NO supports old applications that do not desire to have CICS
SYNCPOINT requests intercepted and serviced on their behalf. Such applications
must COMMIT or FINISH the database transaction before terminating; otherwise,
CA-IDMS rolls back updates processed between the last COMMIT and task
termination.

Assembling and link editing IDMSCINT: JCL to assemble and link edit the
IDMSCINT module appears below for OS/390 and VSE/ESA operating systems.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 IDMSCINT assembly and link edit

// EXEC ASMA9�

//SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

// DD DSN=cics.maclib,DISP=SHR

//SYSIN DD �

IDMSCINT macro statement

 END

//LKED.SYSLMOD DD DSN=idms.loadlib(module-name),DISP=SHR

Chapter 6. TP-Monitor Considerations 6-17

6.2 CICS systems

VSE/ESA IDMSCINT assembly and link edit

Step 1

// OPTION DECK

// EXEC ASMA9�

IDMSCINT macro statement

 END

/�

Step 2

// EXEC LIBR

 CATALOG module-name.OBJ

 object deck output from Step 1

/�

Item Description

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

cics.maclib data set name of the CICS macro library

module-name IDMSCINT when EXEC=YES; IDMSINC1 when
EXEC=NO

Item Description

module-name IDMSCINT when EXEC=YES; IDMSINC1 when
EXEC=NO

 6.2.2 INTCR141

The INTCR141 macro corresponds to the version of IDMSINTC shipped with
CA-IDMS Release 14.1. It is supplied for the convenience of those clients who are
running versions of CICS prior to 4.1.0. The parameters and options are the same as
those that existed for CA-IDMS Release 14.1.

 INTCR141 syntax

6-18 CA-IDMS System Operations

6.2 CICS systems

��─┬───────────────┬─ INTCR141 CWADISP=cwa-intc-address-displacement ─────────�

├─ module-name ─┤

└─ IDMSINTC ────┘

 �─ ,OPSYS=operating-system ──�

 �─┬───────────────────────────┬──�

└─ ,CVNUM= ─┬─ cv-number ─┬─┘

└─ � ← ───────┘

 �─┬──────────────────────────┬───�

└─ ,SVC= ─┬─ svc-number ─┬─┘

└─ NO ← ───────┘

 �─┬───────────────────────┬──�

└─ ,ESCDLI= ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬──────────────────┬───�

└─ ,SYSCTL=ddname ─┘

 �─┬──────────────────────────────┬───�

└─ ,TPNAME= ─┬─ CICS ← ──────┬─┘

└─ system-name ─┘

 �─┬───┬──────────────────────────────�

└─ ,NODENAM=(nodename ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 �─┬──┬───────────────────────────────�

└─ ,DBNAME=(db-name ─┬─ ,ALWAYS ────┬──) ─┘

└─ ,DEFAULT ← ─┘

 �─┬───────────────────┬──�

└─ ,XA= ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬───────────────────────────────────┬──────────────────────────────────────�

└─ ,ERRDCT= ─┬─ destination-name ─┬─┘

└─ CSMT ← ───────────┘

 �─┬────────────────────┬───�

└─ ,PLT= ─┬─ YES ← ─┬┘

└─ NO ────┘

 �─┬─────────────────────────────────────┬────────────────────────────────────�

└─ ,TIMEOUT= ─┬─ number-of-minutes ─┬─┘

└─ 1� ← ──────────────┘

Chapter 6. TP-Monitor Considerations 6-19

6.2 CICS systems

 �─┬──────────────────────┬───�

└─ ,TRANSID=task-code ─┘

 �─┬──────────────────────────────────┬───────────────────────────────────────�

└─ ,CICSLVL= ─┬─ release-number ─┬─┘

└─ 31 ← ───────────┘

 �─┬───────────────────────┬──�

└─ ,OPTIXIT= ─┬─ YES ──┬┘

└─ NO ← ─┘

 �─┬────────────────────────────┬───�

└─ ,DICTNAM=dictionary-name ─┘

 �─┬────────────────────────────┬───�

└─ ,DICTNOD=dictionary-node ─┘

 �─┬────────────────────────┬───��

└─ ,MACLVL= ─┬─ YES ← ─┬─┘

└─ NO ────┘

The following parameters are for use in an CICSOPT tailored for SQL:

 DICTNAM

 DICTNOD

 INTCR141 parameters

module-name
Identifies the CSECT name of the generated module.

Default: IDMSINTC

CWADISP=
Identifies the displacement within the CICS CWA of a fullword to hold the
address of the INTCR141 module. For cwa-intcddress-displacement, specify
either a number of bytes (maximum value is 3584) or the name of a field within
the CSA copy book.

Considerations: The specified field must be on a fullword boundary within the
CWA and must be the same value given to the CWADISP parameter of the
IDMSCINT macro.

OPSYS=
Identifies the operating system under which the DC/UCF system will run.

Valid values for operating-system:

 ■ OS390

 ■ VSE

Previously supported values are still accepted, but they have been deprecated.

CVNUM=
Identifies the number of the DC/UCF system to be accessed from CICS. For
cv-number, specify the number used for the CVNUM parameter in the CV-gen.

6-20 CA-IDMS System Operations

6.2 CICS systems

SVC=
Identifies the number of the CA-IDMS SVC. For svc-number, specify a value as
follows:

■ If no SVC is being used, or if using SYSCTL, specify NO.

■ If an SVC is being used by the DC/UCF system, specify the SVC number.

The SVC parameter is required if no SYSCTL file is specified.

ESCDLI=
Is never explicitly specified. CDMSIJMP automatically sets this parameter to
YES if installing CA-IDMS/DLI Transparency and the CICS interface
(INT-CICS).

SYSCTL=
Identifies the ddname of the file containing DC/UCF system control information.

If no SVC (described above) is specified, the SYSCTL parameter is required.
Likewise, if SYSCTL is desired, the SVC parameter must be NO (SVC=NO).

TPNAME=
Specifies the name by which DC/UCF will identify all tasks running under this
CICS system. For system-name, specify a 4-character name.

This name forms the first part of the local transaction ID for database requests. It
also forms the first 4 characters of the front end system ID for external request
units. "BULK" is appended to system-name to form the front-end system ID. The
front-end system ID is used in determining the packet size for communications
and may also be used as an alternate task code for controlling external request unit
processing.

NODENAM=
Identifies a system defined to the DC/UCF communications network to be
contained in the INTCR141 module and the conditions under which programs
signing on to the DC/UCF system will be directed to the named node for
execution.

For nodename, specify the 1- to 8-character name of a remote system. If the node
name is not specified, the DC/UCF obtains the appropriate node name from the
application program or from the SYSCTL file (OS/390 only).

ALWAYS
Indicates that nodename is to override any node named by the program. Requests
from programs signing on to DC/UCF are always directed to the named node
regardless of node name specifications made by the program.

DEFAULT
Indicates that requests from programs signing on to DC/UCF are to be directed to
the named node only if the program does not name a node.

Note: Under OS/390 and VSE/ESA, SYSCTL node name specifications can
override INTCR141 and program specifications.

Chapter 6. TP-Monitor Considerations 6-21

6.2 CICS systems

DBNAME=
Identifies the database (or data dictionary) name to be contained in the INTCR141
module. This parameter also identifies the conditions under which programs
signing on to the DC/UCF system access the named database.

For db-name, specify the name of the database that programs are to access when
running under the DC/UCF system. If the database name is not specified,
DC/UCF obtains the appropriate database name from the application program or
from the SYSCTL file.

ALWAYS
Indicates that db-name is to override any database named by the program.
Programs signing on to DC/UCF always execute against the named database
regardless of database name specifications made by the program.

DEFAULT
Indicates that programs signing on to DC/UCF are to execute against the
named database only if the program does not name a database.

Note: Under OS/390 and VSE/ESA, SYSCTL database name specifications
can override INTCR141 and program specifications.

XA=NO/YES
Designates whether the operating system is XA (YES) or not (NO). If you
specify YES, IDMSINTC allocates the primary user-oriented storage in the 31-bit
storage area. This storage is retained across all successful task terminations for
terminal-associated tasks, and this storage is reused on the next DC/UCF request.
The storage is freed for any failing or non-terminal task.

MACLVL=YES/NO
Indicates whether applications using the CICS macro-level interface is supported
by this CA-IDMS interface. The default is MACLVL=YES.

CAUTION:
If a macro-level application attempts communications with a CA-IDMS
interface assembled with MACLVL=NO, the results are unpredictable.

ERRDCT=
Identifies the CICS transient data destination to be used as the target for error
messages produced by IDMSINTC and IDMSTRUE. The default
destination-name is CSMT. Use another destination if you want to rout CA-IDMS
error messages to another CICS destination. The DCT entry should be defined
with a logical record length of at least 130 characters.

PLT=YES/NO
Indicates how INTCR141 starts up. YES indicates that INTCR141 can start up as
a PLT-invoked program. NO indicates INTCR141 always starts up as a user task
once CICS start up is complete.

TIMEOUT
Indicates the number of minutes (0 to 10) before which automatic removal of
storage occurs. If you specify a nonzero value, CICSOPT generates a return code
of 4 with a warning message that any application code using the TS queue SET

6-22 CA-IDMS System Operations

6.2 CICS systems

option will not function properly. Specify a nonzero value to conserve CICS
storage.

Default: 0

TRANSID=
Identifies the transaction coded in the program control table (PCT) as invoking
INTCR141. Task-code must be the name of a task defined in the PCT table.

��For more information about the PCT table, see Chapter 5, “UCF Operations.”

CICSLVL=
Indicates the level of CICS you are running, specified as a two-digit number. The
default is 31, which can be used for CICS 3.1 or below. If the CICS level is
greater than 3.1, specify the number.

OPTIXIT=YES/NO
Indicates whether CICS transactions can modify the IDMSOPTI structure
dynamically so that only the task thread is affected by the changes. YES indicates
that the IDMSOPTI structure can be modified dynamically.

IDMSINTC copies the static IDMSOPTI structure into dynamic storage and passes
it to the user routine, which may alter it based on site-specific rules.

��For more information about the OPTIXIT user exit, refer to 7.3.2, “OPTIXIT”
on page 7-30.

DICTNAM=
Sets the default SQL catalog. In general, existing native DML will not behave in
the desired manner when you use this parameter.

DICTNOD=
Sets the default SQL catalog. In general, existing native DML will not behave in
the desired manner when you use this parameter.

Assembling and link editing INTCR141: JCL to assemble and link edit the
INTCR141 module appears below for OS/390 and VSE/ESA operating systems.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 INTCR141 assembly and link edit

//CICTRNS EXEC PGM=DFHEAP1$,REGION=2�48K

//STEPLIB DD DSN=cics.loadlib,DISP=SHR

//SYSPUNCH DD DSN=&&TEMPMAC(INTCR141),

// DISP=(NEW,PASS),UNIT=SYSDA,SPACE=(CYL,(3,,�4),

// DCB=(LRECL=8�,BLKSIZE=312�,RECFM=FB,DSORG=PO)

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT2 DD DSN=&&SYSUT2,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT3 DD DSN=&&SYSUT3,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

�ASM XOPTS(NOPROLOG NOEPILOG NOEDF SP)

// DD DSN=idms.maclib(INTCR141),DISP=SHR

Chapter 6. TP-Monitor Considerations 6-23

6.2 CICS systems

 END

//�--

//� ASSEMBLER ASMA9� JOB STREAM

//�--

//ASMSTEP EXEC PGM=ASMA9�,

// PARM='ALIGN,XREF',

// REGION=2�48K

//SYSLIB DD DSN=&&TEMPMAC,DISP=(OLD,DELETE)

// DD DSN=idms.maclib,DISP=SHR

// DD DSN=idms.srclib,DISP=SHR

// DD DSN=cics.maclib,DISP=SHR

// DD DSN=os39�.maclib,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT2 DD DSN=&&SYSUT2,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT3 DD DSN=&&SYSUT3,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSPRINT DD SYSOUT=�

//SYSPUNCH DD DSN=&&OBJECT,

 DISP=(NEW,PASS),

 UNIT=SYSDA,

 SPACE=(8�,(5��,1���))

//SYSIN DD �

INTCR141 macro statement

 END

//�--

//� LINK IEWL

//�--

//LINK EXEC PGM=IEWL,

// PARM='LET,LIST,XREF,RENT',

// REGION=128K,

// COND=(8,LT,ASMSTEP)

//SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=�

//SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,

// SPACE=(64��,(8�)),

// DISP=(NEW,PASS)

//IN1 DD DSN=idms.distload,DISP=SHR

//IN2 DD DSN=cics.loadlib,DISP=SHR

//IN3 DD DSN=&&OBJECT,DISP=(OLD,DELETE)

//SYSLIN DD DDNAME=SYSIN

//SYSIN DD �

 ORDER DFHEAI

 INCLUDE IN2(DFHEAI)

 INCLUDE IN3

 INCLUDE IN1(IDMSTRUE)

 INCLUDE IN1(IDMS)

 INCLUDE IN2(DFHEAIO)

 ENTRY STARTUP

 MODE AMODE(31),RMODE(24)

 NAME IDMSINTC(R)

/�

6-24 CA-IDMS System Operations

6.2 CICS systems

Important: The load module name must match the INTCR141 CSECT name
established during the compile of the INTCR141 macro.

VSE/ESA INTCR141 assembly and link edit

// DLBL idmslib,

// EXTENT ,nnnnnn

// LIBDEF �,SEARCH=(idmslib.sublib,cicslib.sublib)

// LIBDEF PHASE,CATALOG=idmslib.sublib

// OPTION CATAL

 PHASE IDMSINTC,�

 INCLUDE DFHEAI

// EXEC ASMA9�,SIZE=128K

INTCR141 macro statement

 END

/�

 INCLUDE IDMSTRUE

 INCLUDE DFHEAIO

 ENTRY STARTUP

// EXEC LNKEDT,SIZE=128K

/�

Note: INTCR141 and the CICS macros and copy books must be accessible from the
assigned source statement library.

Item Description

cics.loadlib data set name of the CICS load library

cics.maclib data set name of the CICS macro library

idms.distload data set name of the CA-IDMS SMP/E distribution load
library

idms.maclib data set name of the CA-IDMS macro library

idms.srclib data set name of the CA-IDMS source library

os39�.maclib data set name of the OS/390 system macro library

Item Description

cicslib.sublib name of the sublibrary within the library containing
CICS modules

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

nnnnnn volume serial identifier of appropriate disk volume

Chapter 6. TP-Monitor Considerations 6-25

6.2 CICS systems

6.2.3 IDMSINTL and IDMSCINL CICS interface macros

The IDMSINTL/IDMSCINL interface differs from the standard CICS interface
(IDMSINTC/IDMSCINT) in the following ways:

■ Supports only native DML run-units using 16-character-format subschema
controls. SQL, UCF, and Transparency interfaces remain available only through
the standard interface.

■ An OPTIXIT is not provided.

■ Each run-unit utilizes an ERE (External Request Element). The standard interface
uses one ERE per CICS transaction regardless of the number of run-units bound
by that transaction.

■ Task-level commands (COMMIT TASK, ROLLBACK TASK, FINISH TASK) are
not supported.

■ CA-IDMS load libraries are not required at run time.

Because this interface offers a minimal subset of the features available through the
standard interface, its resource requirements are therefore substantially reduced. Users
with applications that demand no more than what this interface offers can use it in
place of the standard interface to reduce resource consumption in the CICS system.
Applications that need the full services of the standard interface can coexist freely in
the same or different CICS systems.

IDMSINTL/ IDMSCINL considerations: The following considerations apply to
using IDMSINTL/IDMSCINL:

■ Multiple copies of IDMSINTL and IDMSCINL can coexist within a single CICS
region, but each must be associated with a unique CWADISP.

■ Existing applications linked with a pre-12.0 version of IDMSCINT can be run
against either a Release 12.01, Release 14.0, or Release 14.1 IDMSINTC or
IDMSINTL without relinking.

■ Programs that share a single Subschema Control (SSC) must be linked with the
same IDMSCINT or IDMSCINL stub module, that is, you cannot mix invocations
of IDMSINTC with IDMSINTL using the same SSC.

■ Programs linked with a pre-12.0 version of IDMSCINT or any other version of
IDMSCINL can be executed using either an IDMSINTC or IDMSINTL interface.

 6.2.3.1 IDMSINTL

IDMSINTL is intended for applications that execute navigational DML (nDML) only.
Applications that require the additional functionality such as SQL or mixed nDML and
SQL, must use IDMSINTC.

IDMSINTL contains an embedded TRUE exit that aborts (rollback) any un-FINISHed
run-units at the end of the transaction, but does not provide AUTOCMT (CICS
SYNCPOINT interception) as does the standard interface.

6-26 CA-IDMS System Operations

6.2 CICS systems

Functions IDMSINTL performs at CICS startup: The functions performed by
IDMSINTL vary based on whether a CA-IDMS SVC is specified in IDMSINTL:

■ If a CA-IDMS SVC is specified, IDMSINTL performs the following functions
when CICS is started up:

1. Stores the address of the IDMSINTL entry-point address table in the CWA

2. Returns control to CICS

■ If a CA-IDMS SVC is not specified, IDMSINTL performs the following functions
when CICS is started up:

1. Opens and reads the SYSCTL file to obtain the necessary central version
information (for example, the CVNUMBER value of the DC/UCF system and
the CA-IDMS SVC number)

2. Stores the address of the IDMSINTL entry-point address table in the CWA

3. Returns control to CICS

Automatically starting IDMSINTL: It may be useful to have the IDMSINTL
interface module started automatically at CICS startup time. To do this:

1. Code the following entry for IDMSINTL in the program list table:

DFHPLT TYPE=ENTRY

 PROGRAM=IDMSINTL

2. Enter the name of the program list table (PLTPI) in the system initialization table.

If you don't have IDMSINTL started as a function of the CICS startup routine, be sure
to execute the IDMSINTL interface module before attempting communication with
DC/UCF at run time. To execute the IDMSINTL module, enter a TRANSID that
corresponds to the IDMSINTL module in the PCT tables.

To start up IDMSINTL automatically after control is given to CICS, code the
following IDMSINTL macro:

PLT=NO,

TRANSID=task-code

Perform steps 1 and 2 above and define task-code in the program control table (PCT)
to invoke IDMSINTL.

��For more information about the PCT table, see Chapter 5, “UCF Operations.”

IDMSINTL processing at run time: IDMSINTL must be resident in CICS and
must be executed before the execution of any CA-IDMS database application for that
run of CICS. Control passes from IDMSCINL to the main entry point to notify
DC/UCF to perform a service requested by the CICS user program.

IDMSINTL performs the following functions:

■ Allocates dynamic storage required to service the run-unit.

Chapter 6. TP-Monitor Considerations 6-27

6.2 CICS systems

■ Enables the recovery exit entry point for the current CICS task. The exit performs
the necessary cleanup when the CICS task terminates.

■ Sends the request through the CA-IDMS SVC to the DC/UCF region. IDMSINTL
implicitly issues a CICS WAIT command, which places the current task in a wait
state until the request is serviced.

■ Passes the requested database record and/or error status to the user program.

��For more information about run-time processing, see 6.2.8, “What happens when a
CA-IDMS instruction is executed” on page 6-38.

 IDMSINTL syntax

��─┬───────────────┬─ IDMSINTL CWADISP=cwa-intc-address-displacement ─────────�

├─ module-name ─┤

└─ IDMSINTL ────┘

 �─ ,OPSYS=operating-system ──�

 �─┬───────────────────────────┬──�

└─ ,CVNUM= ─┬─ cv-number ─┬─┘

└─ � ← ───────┘

 �─┬──────────────────────────┬───�

└─ ,SVC= ─┬─ svc-number ─┬─┘

└─ NO ← ───────┘

 �─┬──────────────────┬───�

└─ ,SYSCTL=ddname ─┘

 �─┬──────────────────────────────┬───�

└─ ,TPNAME=system-name ────────┘

 �─┬───┬──────────────────────────────�

└─ ,NODENAM=(nodename ─┬─ ,ALWAYS ────┬─) ─┘

└─ ,DEFAULT ← ─┘

 �─┬──┬───────────────────────────────�

└─ ,DBNAME=(db-name ─┬─ ,ALWAYS ────┬──) ─┘

└─ ,DEFAULT ← ─┘

 �─┬───────────────────┬──�

└─ ,XA= ─┬─ YES ──┬─┘

└─ NO ← ─┘

 �─┬───────────────────────────────────┬──────────────────────────────────────�

└─ ,ERRDCT= ─┬─ destination-name ─┬─┘

└─ CSMT ← ───────────┘

 �─┬────────────────────┬───�

└─ ,PLT= ─┬─ YES ← ─┬┘

└─ NO ────┘

 �─┬──────────────────────┬───�

└─ ,TRANSID=task-code ─┘

 �─┬────────────────────────┬───��

└─ ,MACLVL= ─┬─ YES ← ─┬─┘

└─ NO ────┘

6-28 CA-IDMS System Operations

6.2 CICS systems

 IDMSINTL parameters

module-name
Identifies the CSECT name of the generated module.

CWADISP=
Identifies the displacement within the CICS CWA of a fullword to hold the
address of the IDMSINTL module. For cwa-intcddress-displacement, specify
either a number of bytes (maximum value is 3584) or the name of a field within
the CSA copy book.

Considerations: The specified field must be on a fullword boundary within the
CWA and must be the same value given to the CWADISP parameter of the
IDMSCINL macro.

OPSYS=
Identifies the operating system under which the DC/UCF system will run.

Valid values for operating-system:

 ■ OS/390

 ■ VSE/ESA

 ■ DVS

 ■ DS

 ■ DOS

 ■ DOSVS

CVNUM=
Identifies the number of the DC/UCF system to be accessed from CICS. For
cv-number, specify the number used for the CVNUM parameter in the CV-gen.

SVC=
Identifies the number of the CA-IDMS SVC. For svc-number, specify a value as
follows:

■ If no SVC is being used, or if using SYSCTL, specify NO.

■ If an SVC is being used by the DC/UCF system, specify the SVC number.

The SVC parameter is required if no SYSCTL file is specified.

SYSCTL=
Identifies the ddname of the file containing DC/UCF system control information.

If no SVC (described above) is specified, the SYSCTL parameter is required.
Likewise, if SYSCTL is desired, the SVC parameter must be NO (SVC=NO).

TPNAME=
Specifies the name by which DC/UCF will identify all tasks running under this
CICS system. If this parameter is omitted, the four-character local system id of
this CICS system will be used, thereby permitting this CICS interface module to
be used by multiple CICS systems. You may optionally specify a four-character
name.

Chapter 6. TP-Monitor Considerations 6-29

6.2 CICS systems

This name forms the first part of the local transaction ID for database requests. It
also forms the first 4 characters of the front end system ID for external request
units. "BULK" is appended to system-name to form the front-end system ID. The
front-end system ID is used in determining the packet size for communications
and may also be used as an alternate task code for controlling external request unit
processing.

NODENAM=
Identifies a system defined to the DC/UCF communications network to be
contained in the IDMSINTL module and the conditions under which programs
signing on to the DC/UCF system will be directed to the named node for
execution.

For nodename, specify the 1- to 8-character name of a remote system. If the node
name is not specified, the DC/UCF obtains the appropriate node name from the
application program or from the SYSCTL file (OS/390 only).

ALWAYS
Indicates that nodename is to override any node named by the program. Requests
from programs signing on to DC/UCF are always directed to the named node
regardless of node name specifications made by the program.

DEFAULT
Indicates that requests from programs signing on to DC/UCF are to be directed to
the named node only if the program does not name a node.

Note: Under OS/390 and VSE/ESA, SYSCTL node name specifications can
override IDMSINTL and program specifications.

DBNAME=
Identifies the database (or data dictionary) name to be contained in the
IDMSINTL module. This parameter also identifies the conditions under which
programs signing on to the DC/UCF system access the named database.

For db-name, specify the name of the database that programs are to access when
running under the DC/UCF system. If the database name is not specified,
DC/UCF obtains the appropriate database name from the application program or
from the SYSCTL file (OS/390 only).

ALWAYS
Indicates that db-name is to override any database named by the program.
Programs signing on to DC/UCF always execute against the named database
regardless of database name specifications made by the program.

DEFAULT
Indicates that programs signing on to DC/UCF are to execute against the
named database only if the program does not name a database.

Note: Under OS/390 and VSE/ESA, SYSCTL database name specifications
can override IDMSINTL and program specifications.

XA=NO/YES
Designates whether the operating system is XA (YES) or not (NO).

6-30 CA-IDMS System Operations

6.2 CICS systems

ERRDCT=
Identifies the CICS transient data destination to be used as the target for error
messages produced by IDMSINTL. The default destination-name is CSMT. Use
another destination if you want to rout CA-IDMS error messages to another CICS
destination. The DCT entry should be defined with a logical record length of at
least 130 characters.

PLT=YES/NO
Indicates how IDMSINTL starts up. YES indicates that IDMSINTL can start up
as a PLT-invoked program. NO indicates IDMSINTL always starts up as a user
task once CICS start up is complete.

TRANSID=
Identifies the transaction coded in the program control table (PCT) as invoking
IDMSINTL. Task-code must be the name of a task defined in the PCT table.

��For more information about the PCT table, see Chapter 5, “UCF Operations.”

MACLVL=YES/NO
Indicates whether applications using the CICS macro-level interface is supported
by this CA-IDMS interface. The default is MACLVL=YES.

CAUTION:
If a macro-level application attempts communications with a CA-IDMS
interface assembled with MACLVL=NO, the results are unpredictable.

Assembling and link editing IDMSINTL: JCL to assemble and link edit the
IDMSINTL module appears below for OS/390 and VSE/ESA operating systems.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 IDMSINTL assembly and link edit

//CICTRNS EXEC PGM=DFHEAP1$,REGION=2�48K

//STEPLIB DD DSN=cics.loadlib,DISP=SHR

//SYSPUNCH DD DSN=&&TEMPMAC(IDMSINTL),

// DISP=(NEW,PASS),UNIT=SYSDA,SPACE=(CYL,(3,,�4),

// DCB=(LRECL=8�,BLKSIZE=312�,RECFM=FB,DSORG=PO)

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT2 DD DSN=&&SYSUT2,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT3 DD DSN=&&SYSUT3,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSPRINT DD SYSOUT=�

//SYSIN DD �

�ASM XOPTS(NOPROLOG NOEPILOG NOEDF SP)

// DD DSN=idms.maclib(IDMSINTL),DISP=SHR

// DD �

 END

//�--

//� ASSEMBLER ASMA9� JOB STREAM

//�--

//ASMSTEP EXEC PGM=ASMA9�,

// PARM='LIBMAC,XREF',

// REGION=2�48K

//SYSLIB DD DSN=&&TEMPMAC,DISP=(OLD,DELETE)

Chapter 6. TP-Monitor Considerations 6-31

6.2 CICS systems

// DD DSN=idms.maclib,DISP=SHR

// DD DSN=idms.srclib,DISP=SHR

// DD DSN=cics.maclib,DISP=SHR

// DD DSN=os39�.maclib,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT2 DD DSN=&&SYSUT2,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT3 DD DSN=&&SYSUT3,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSPRINT DD SYSOUT=�

//SYSPUNCH DD DSN=&&OBJECT,

 DISP=(NEW,PASS),

 UNIT=SYSDA,

 SPACE=(8�,(5��,1���))

//SYSIN DD �

IDMSINTL macro statement

 END

//�--

//� LINK IEWL

//�--

//LINK EXEC PGM=IEWL,

// PARM='LET,LIST,XREF,RENT',

// REGION=128K,

// COND=(8,LT,ASMSTEP)

//SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//SYSPRINT DD SYSOUT=�

//SYSUT1 DD DSN=&&SYSUT1,

// UNIT=SYSDA,

// SPACE=(64��,(8�)),

// DISP=(NEW,PASS)

//IN2 DD DSN=cics.loadlib,DISP=SHR

//IN3 DD DSN=&&OBJECT,DISP=(OLD,DELETE)

//SYSLIN DD DDNAME=SYSIN

//SYSIN DD �

 ORDER DFHEAI

 INCLUDE IN2(DFHEAI)

 INCLUDE IN3

 INCLUDE IN2(DFHEAI�)

 ENTRY STARTUP

 MODE AMODE(31),RMODE(24)

 NAME idmsintl(R)

/�

Item Description

cics.loadlib data set name of the CICS load library

cics.maclib data set name of the CICS macro library

idms.loadlib data set name of the CA-IDMS load library (where the
IDMSINTL module is linked); must be a load library
concatenated in the CICS DFHRPL

idms.maclib data set name of the CA-IDMS macro library

idms.srclib data set name of the CA-IDMS source library

os39�.maclib data set name of the OS/390 system macro library

6-32 CA-IDMS System Operations

6.2 CICS systems

Important: The load module name must match the IDMSINTL CSECT name
established during the compile of the IDMSINTL macro.

VSE/ESA IDMSINTL assembly and link edit

// DLBL idmslib,

// EXTENT ,nnnnnn

// LIBDEF �,SEARCH=(idmslib.sublib,cicslib.sublib)

// LIBDEF PHASE,CATALOG=idmslib.sublib

// OPTION CATAL

 PHASE IDMSINTL,�

 INCLUDE DFHEAI

// EXEC ASMA9�,SIZE=128K

IDMSINTL macro statement

 END

/�

 INCLUDE IDMSDSAD

 INCLUDE DFHEAIO

 ENTRY STARTUP

// EXEC LNKEDT,SIZE=128K

/�

Note: IDMSINTL and the CICS macros and copy books must be accessible from the
assigned source statement library.

Item Description

cicslib.sublib name of the sublibrary within the library containing
CICS modules

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

nnnnnn volume serial identifier of appropriate disk volume

 6.2.3.2 IDMSCINL

IDMSCINL is essentially a copy of the Release 10.2 IDMSCINT with the exception
that the CICS CWA is located using ADDRESS CWA. This makes IDMSCINL
compatible with all releases of CICS.

You generate IDMSCINL at DC/UCF installation time. IDMSCINL must be link
edited with each CICS user program that accesses DC/UCF (including Assembler
modules). IDMSCINL retrieves the entry point address of IDMSINTL from the CWA
and passes control to IDMSINTL. The module generated by the IDMSCINL macro is
fully reentrant.

��For more information about run-time events, see 6.2.8, “What happens when a
CA-IDMS instruction is executed” on page 6-38.

Chapter 6. TP-Monitor Considerations 6-33

6.2 CICS systems

To prepare an IDMSCINL macro, use the syntax shown below. If both the
command-level and the macro level interfaces are being used, prepare separate
IDMSCINL modules with distinct names for each interface.

 IDMSCINL syntax

��─┬───────────────┬─ IDMSCINL CWADISP=cwa-intc-address-displacement ─────────�

└─ IDMSCINT ← ──┘

 �─┬────────────────────────────────┬───�

└─ ,EP1=first-entry-point-label ─┘

 �─┬─────────────────────────────────┬──�

└─ ,EP2=second-entry-point-label ─┘

 �─┬─────────────────────┬───��

└─ ,EXEC= ─┬─ YES ←─┬─┘

└─ NO ───┘

 IDMSCINL parameters

IDMSCINT
Identifies the CSECT name of the generated module.

CWADISP=
Identifies the displacement within the CICS CWA of a fullword that holds the
address of the IDMSINTL module. For cwa-intcddress-displacement, specify the
same value given to the CWADISP operand of the IDMSINTL macro.

EP1=
Identifies the name of the first entry point in the generated module. For
first-entry-point-label, specify the name of the first entry point. The default value
is either the value given to module-name above or IDMSCINT if module-name is
not specified.

EP2
Identifies the name of the second entry point in the generated module. For
second-entry-point-label, specify the name of the second entry point.

Considerations:

■ A second entry point is present only if the EXEC parameter described below
specifies NO. In this case, if EP2 is not specified, the default value is
IDMSINC2.

■ If the EXEC parameter is coded as YES, then no second entry point is
generated, and EP2 should not be specified.

EXEC=YES/NO
Indicates whether the IDMSCINT module being generated is to be used with the
CICS command-level interface.

YES
Specify YES to indicate that the command-level interface is in use. YES is
the default.

6-34 CA-IDMS System Operations

6.2 CICS systems

NO
Specify NO to indicate that the command-level interface is not in use.

Assembling and link editing IDMSCINL: JCL to assemble and link edit the
IDMSCINL module appears below for OS/390 and VSE/ESA operating systems.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 IDMSCINL assembly and link edit

// EXEC ASMA9�

//SYSLIB DD

// DD DSN=idms.srclib,DISP=SHR

// DD DSN=cics.maclib,DISP=SHR

//SYSIN DD �

IDMSCINL macro statement

 END

//LKED.SYSLMOD DD DSN=idms.loadlib(module-name),DISP=SHR

VSE/ESA IDMSCINL assembly and link edit

Step 1

// OPTION DECK

// EXEC ASMA9�

IDMSCINL macro statement

 END

/�

Step 2

// EXEC LIBR

 CATALOG module-name.OBJ

 object deck output from Step 1

/�

Item Description

idms.loadlib data set name of the CA-IDMS load library

idms.srclib data set name of the CA-IDMS source library

cics.maclib data set name of the CICS macro library

module-name IDMSCINL or other site-selected load module name. If
the module is to be autolinked with application
programs, the load module name must be IDMSCINT
for a command-level interface or IDMSINC1 for a
macro-level interface; however, this option must be
used with extreme caution because it may conflict with
the load module created by compiling and linking the
IDMSCINT macro.

Chapter 6. TP-Monitor Considerations 6-35

6.2 CICS systems

Item Description

module-name IDMSCINL or other site-selected object name. If the
module is to be autolinked with application programs,
the OBJ name must be IDMSCINT for a
command-level interface or IDMSINC1 for a
macro-level interface; however, this option must be
used with extreme caution because it may conflict with
the load module created by compiling and cataloging
the IDMSCINT macro.

6.2.4 DC/UCF execution mode in the CICS environment

DC runs independently of the CICS monitor, but CICS programs use CA-IDMS
central version database management services.

The figure below shows the CICS monitor and the DC/UCF system:

 ┌───┐

 │ SUPERVISOR │

 ├──────────────────────┬────────────────────────────┤

 │ ┌────────────┐ │ ┌──────────────┐ │

 │ │ DC/UCF │ │ │ CICS │ │

 │ │ (Main task)│ │ │ (Main task) │ │

 │ │ │ │ │ │ │

 │ │ │ │ ├──────────────┤ │

 │ │ │ │ │ IDMSINTC │ │

 │ │ │ │ │ CICS │ │

 │ │ │ │ │ RESIDENT │ │

 │ │ │ │ │ TX │ │

 │ │ │ │ └──────────────┘ │

 │ │ │ │ │

 │ └────────────┘ │ │

 │ │ │

 │ P1 │ P2 │

 └──────────────────────┴────────────────────────────┘

To operate CICS with DC/UCF:

1. Start up the DC/UCF system.

2. Start up CICS following standard CICS operating procedures.

Dispatch priorities: You should assign DC/UCF a higher dispatching priority than
CICS. If CICS has a higher priority, you run the risk, in a busy system, of starting
many more CICS tasks and of binding the DC/UCF transactions without giving
DC/UCF an opportunity to finish what was started. By having DC/UCF at a higher
dispatching priority, work is more likely to be completed in an efficient first in - first
out (FIFO) method. In addition, there is less likelihood of exceeding the MAXERUS
task parameter limit and less likelihood of exceeding the MAXTASKS parameter limit
on CICS when all the CICS tasks are waiting on CA-IDMS requests to finish.

6-36 CA-IDMS System Operations

6.2 CICS systems

6.2.5 Running multiple CICS or DC/UCF systems

To run multiple CICS systems with one DC/UCF system, include a copy of module
IDMSINTC in each CICS system. All copies of IDMSINTC can contain the same
values for CWADISP. Each copy of IDMSINTC must have a unique TPNAME
parameter so that DC/UCF will not have duplicate local task ids. The CA-IDMS
interface linked with IDMSINTC automatically keeps track of which central versions
were accessed by a task thread.

Note: The SAMPJCL installation library includes a sample procedure to execute one
CICS system with multiple DC/UCF systems under SMP/E.

6.2.6 Components of the CICS and DC/UCF environment

When used with DC/UCF, the CICS operating environment contains the components
listed below and shown in the following figure.

When CICS is used with DC/UCF, the CICS environment contains:

■ CICS application programs.

■ CICS program interface module (IDMSCINT). IDMSCINT provides the
necessary communication between the CICS user program and the CICS
TP-monitor interface module IDMSINTC (described below).

 ■ CICS nucleus.

■ CICS common system area (CSA). The CSA includes a common work area
(CWA) that contains a fullword pointing to a table of addresses within
IDMSINTC; the addresses in the table point to three entry points within
IDMSINTC (described below).

■ CICS TP-monitor interface module (IDMSINTC). IDMSINTC allows CICS and
DC/UCF to communicate at run time.

■ IDMSTRUE, the task termination exit.

Chapter 6. TP-Monitor Considerations 6-37

6.2 CICS systems

6.2.7 CICS extended addressing considerations

The CA-IDMS interface to CICS supports user programs running above the 16
megabyte line. In order to take advantage of XA enhancements, the customer must be
using COBOL II or PL/I Release 5.1.

In addition, the following steps are necessary to implement XA support for CICS
programs invoking CA-IDMS services:

1. Assemble IDMSINTC and IDMSCINT using the H Assembler program ASMA90.

2. Linkedit IDMSINTC as AMODE(31), RMODE(24).

3. Linkedit IDMSCINT as AMODE(31), RMODE(ANY).

4. Linkedit user programs as AMODE(31), RMODE(ANY).

The compiler option for dynamic areas in the user program may specify DATA(31).

Note: Program UCFCICS (UCF CICS front-end) must be AMODE(31), RMODE(24),
and can only run below the line.

6.2.8 What happens when a CA-IDMS instruction is executed

The figure below shows what happens when a CICS program executes a CA-IDMS
database instruction when using the command-level interface.

6-38 CA-IDMS System Operations

6.2 CICS systems

When DC/UCF is used with CICS, the IDMS communications block provides a
16-character field that CICS uses as a work area. This field immediately follows the
direct dbkey (DIRDBKEY) field.

��For information about using the IDMS communications block, see CA-IDMS DML
Reference - Assembler.

6.2.9 Using the various CICS interfaces

The rules for choosing the CICS interface for application execution are as follows:

■ Any application linked with a pre-12.0 version of IDMSCINT may only issue
navigational DML requests and can be executed with any of the CICS interfaces.

■ Any application linked with IDMSCINL may only issue navigational DML
requests and can be executed with any of the CICS interfaces.

■ Any application linked with the 12.0 or higher version of IDMSCINT may issue
any supported CA-IDMS request and can be executed with either IDMSINTC or
IDMSR141.

Chapter 6. TP-Monitor Considerations 6-39

6.2 CICS systems

6.2.10 CICS storage protection with IDMSINTC and IDMSINTL

Beginning with Version 3.3 of CICS, IBM introduced storage protection. In order to
use the features for RENTPGM and STGPROT with programs that access IDMS via
the IDMSINTC or IDMSINTL interfaces, certain procedures must be followed. Note
that TRANSACTION ISOLATION is NOT supported for CICS programs that access
IDMS.

6.2.10.1 CICS setup procedures

1. The transactions that invoke the IDMSINTC, IDMSINTL, and USCFCICS
interfaces need to be defined with TASKDATAKEY=CICS.

2. The IDMSINTC, IDMSINTL, and UCFCICS interface programs need to be
defined with EXECKEY=CICS. Application programs can be defined with
EXECKEY=USER.

3. Ensure that IDMSINTC, IDMSINTL, and UCFCICS are linked with NORENT
parameter.

6.2.10.2 CA-IDMS/DC/UCF setup procedures

These special procedures are needed only if using IDMSINTL.

1. Set up an OS/390 PPT entry for the CV startup module to specify any KEY other
than the CICS protect key (usually 8). Keys below 8 are reserved for special
applications such as VTAM. Key 9 is not valid on some machines. Therefore a
key value in the range 10 through 15 is recommended.

2. Set the CV SYSGEN 'SYSTEM' statement 'STORAGE KEY IS' parameter to any
KEY other than the KEY specified for item 1.

3. Move the CV STARTUP module to an APF authorized library. The load modules
themselves MUST NOT be authorized. The CV STARTUP JCL should contain
only this APF AUTH library in the STEPLIB. Other loadlibs should be
concatenated under CDMSLIB.

6-40 CA-IDMS System Operations

6.3 UTM Systems

 6.3 UTM Systems

The following sections detail how UTM and DC/UCF interact by discussing:

■ DC/UCF execution modes in the UTM environment

■ The IDMSTCM module

6.3.1 DC/UCF execution modes in the UTM environment

When used in the UTM environment, DC/UCF runs independently of the UTM
monitor and UTM programs use the database management services provided by central
version operations.

The figure below shows the UTM monitor and the DC/UCF system:

 ┌───┐

 │ SUPERVISOR │

 ├─────────────────┬────────────────┬────────────────┤

│ ┌────────────┐ │ ┌────────────┐ │ ┌────────────┐ │

│ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │

│ │ │ │ │ UTM │ │ │ UTM │ │

│ │ DC/UCF │ │ │ APPLICATION│ │ │ APPLICATION│ │

│ │ │ │ │ PROGRAM │ │ │ PROGRAM │ │

│ │ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │ │

│ └────────────┘ │ ├────────────┤ │ ├────────────┤ │

│ │ │ IDMSTCM │ │ │ IDMSTCM │ │

│ │ └────────────┘ │ └────────────┘ │

│ │ │ │

 │ TSN 1 │ TSN 2 │ TSN 3 │

 └─────────────────┴────────────────┴────────────────┘

To operate UTM with DC/UCF, start up the DC/UCF and UTM systems as described
below:

1. Start up the DC/UCF system.

2. Start up UTM following standard UTM operating procedures.

 6.3.2 IDMSTCM module

UTM programs access DC/UCF by means of IDMSTCM, the interface module
between DC/UCF and UTM. IDMSTCM must be link edited with each UTM user
program.

Chapter 6. TP-Monitor Considerations 6-41

6-42 CA-IDMS System Operations

 Chapter 7. User Exits

7.1 Overview . 7-3
7.2 DB exits . 7-4

7.2.1 IDMSAJNX . 7-5
7.2.2 IDMSCLCX . 7-9
7.2.3 IDMSDPLX . 7-11
7.2.4 IDMSIOXT . 7-13
7.2.5 IDMSIOX2 . 7-14
7.2.6 IDMSJNL2 . 7-18

7.3 DC/UCF exits . 7-20
7.3.1 IDMSSVCX . 7-21

7.3.1.1 IDMSSVCX examples . 7-23
7.3.1.2 Steps to add IDMSSVCX to your system 7-27

7.3.2 OPTIXIT . 7-30
7.3.3 OPTIQXIT . 7-31
7.3.4 TCKREXIT . 7-34
7.3.5 WAITEXIT . 7-34
7.3.6 WTOEXIT . 7-35
7.3.7 WTOREXIT . 7-43

7.4 Numbered exits . 7-49
7.4.1 Calling conventions for numbered exits 7-50
7.4.2 Macros required for DC/UCF calling conventions 7-51

7.4.2.1 #MOPT macro . 7-52
7.4.2.2 #START macro . 7-52
7.4.2.3 #RTN macro . 7-54
7.4.2.4 #GETSTK macro . 7-54

7.4.3 User-invoked numbered exits . 7-55
7.4.4 Installing numbered exits in the system 7-56

7.4.4.1 Step 1: Code a #DEFXIT macro 7-56
7.4.4.2 Step 2: Assemble and link edit the RHDCUXIT module 7-60

7.4.5 System-invoked numbered exits . 7-62
7.4.5.1 Exit 0 — System Initialization Exit 7-64
7.4.5.2 Exit 1 — Signon Exit . 7-64
7.4.5.3 Exit 2 — Signoff Exit . 7-65
7.4.5.4 Exit 4 — New Task Exit . 7-65
7.4.5.5 Exit 5 — Task Termination Exit I 7-65
7.4.5.6 Exit 6 — Task Termination Exit II 7-66
7.4.5.7 Exit 7 — Write-to-Log Exit . 7-66
7.4.5.8 Exit 8 — Log Full Exit . 7-66
7.4.5.9 Exit 9 — System Statistics Exit 7-66
7.4.5.10 Exit 12 — Terminal I/O Error Exit 7-67
7.4.5.11 Exit 13 — Shutdown Exit . 7-67
7.4.5.12 Exit 14 — BIND RUN UNIT and READY AREA Exit 7-67
7.4.5.13 Exit 15 — VIB Statistics Exit 7-68
7.4.5.14 Exit 16 — Write Printer Exit 7-69
7.4.5.15 Exit 17 — Input Data Stream Exit 7-69
7.4.5.16 Exit 18 — Output Data Stream Exit 7-70
7.4.5.17 Exit 19 — Asynchronous Terminal Connection Exit 7-72

Chapter 7. User Exits 7-1

7.4.5.18 Exit 20 — Resource Limit Exit 7-73
7.4.5.19 Exit 21 — SYSOUTL Report Termination Exit 7-76
7.4.5.20 Exit 22 — Report Security and Routing Exit 7-77
7.4.5.21 Exit 23 — Pre-BIND RUN UNIT Exit 7-78
7.4.5.22 Exit 24 — GET TIME Exit . 7-79
7.4.5.23 Exit 26 — OLQ JCL exit . 7-79
7.4.5.24 Exit 27 — Examining the ERE Extension Exit 7-80
7.4.5.25 Exit 28 — Security Preprocessing Exit 7-81
7.4.5.26 Exit 29 — Security Postprocessing Exit 7-82
7.4.5.27 Exit 30 — Deadlock Victim Selection Exit 7-83
7.4.5.28 Exit 31 — Transaction Statistics Exit 7-84
7.4.5.29 Exit 32 — SYSOUTL Detail Record Exit 7-85
7.4.5.30 Exit 33 — Program Loader Exit 7-85
7.4.5.31 Exit 34 — Unqualified Dbkey FIND/OBTAIN Exit 7-86
7.4.5.32 Exit 35 — Stalled Task Information Exit 7-87
7.4.5.33 Exit 36 - Global Deadlock Victim Selection Exit 7-88
7.4.5.34 Exit 37 - Recovery Wait Exit 7-88
7.4.5.35 Exit 38 - Quiesce Area Exit . 7-89

7-2 CA-IDMS System Operations

7.1 Overview

 7.1 Overview

Predefined user exits allow sites to call user-written routines (user exit routines) at
predefined times during DC/UCF system execution. User exits allow for a variety of
site-specific processing, including security checks, automatic display of system news at
signon, and additional statistics collection.

For example, you can write a user exit routine that's executed immediately before
system statistics are written to the log. The user-exit routine can read current statistics
records, reformat and add to selected records, and send an additional message to the
log recording information of specific interest at your site.

Types of user exits: This chapter describes the three available types of user exits:

■ DB exits allow users to receive control during database operations.

■ DC/UCF exits allow users to receive control during system operations.

■ Numbered exits allow users to receive control during system operations and
during execution of user-written programs.

Costs associated with user exits: Individual sites can use user exits to obtain
information about the internal operations of CA-IDMS, and, to some degree, customize
CA-IDMS. Each site must evaluate whether the benefits associated with user exits
outweigh the costs; the costs include:

■ Implementation and testing

 ■ Performance

■ Recompilation and retrofit in the event that CA-IDMS managed control blocks
change; this cost directly affects how quickly a site can upgrade to a new release

Control blocks: To write user-exit routines, you must be familiar with both the
layout and run-time usage of control blocks. When a user exit is called, the user-exit
routine can access information from system control blocks. During execution, a
user-exit routine can return information to control blocks, for later use by other
programs. The portion of a user-exit routine that accesses control blocks and registers
must be coded in Assembler.

�� Layouts and descriptions of system control blocks are presented in the CA-IDMS
DSECT Reference Guide and the CA-ADS DSECT Reference Guide.

For more information on using Assembler in the DC/UCF environment, see CA-IDMS
DML Reference - Assembler.

Chapter 7. User Exits 7-3

7.2 DB exits

 7.2 DB exits

DB user exits allow the site to call site-specific database processing routines. You
must associate each user-exit routine with a user-exit entry point. These entry points
are predefined by the system.

To include an DB user-exit routine in the system:

1. Code the routine based on the information presented in this chapter.

2. Link edit the entry point with the CA-IDMS module specified for the user-exit
routine in this chapter.

At run time, the system calls a user-exit routine by means of the predefined entry point
for the exit. After the exit routine is performed, control returns to the calling module.

If you do not link edit a given user-exit entry point with its CA-IDMS module, the
user exit is bypassed at run time. In this case, database operations continue without
interruption.

DB user exits are listed in the table below and described individually after the table.

Registers 2 through 13: If any of these DB exits use registers 2 through 13, make
sure that the exit routine saves and restores the contents of these registers.

Entry point CA-IDMS module Usage of exit

IDMSAJNX ARCHIVE
JOURNAL

To review journal records

IDMSCLCX IDMSDBMS To compute a CALC key target page

IDMSDPLX IDMSDBIO To maintain duplicate journal and/or
database files

IDMSIOXT IDMSDBIO To read I/O statistics associated with a
database file

IDMSIOX2 IDMSDBIO To capture I/O statistics, maintain
duplicate database or journal files, to
replace normal I/O calls with calls issued
by this exit

IDMSJNL2 IDMSDBIO To write a second journal file

7-4 CA-IDMS System Operations

7.2 DB exits

 7.2.1 IDMSAJNX

 Entry point: IDMSAJNX

Link edit with: ARCHIVE JOURNAL

Description: ARCHIVE JOURNAL calls this user exit immediately after a journal
is archived (offloaded) from disk to tape.

Sample uses: IDMSAJNX can be called to review journal records in order to:

■ Collect statistics on database activities

■ Collect audit trail information on database usage

Journal record control block: When IDMSAJNX is called, register 1 points to a
fullword that contains the address of the journal record control block. This control
block contains the information listed below.

Journal record types: IDMSAJNX can place any of these record types in the
journal record control block:

Field Field description

Journal record length
(halfword)

The length, in bytes, of significant journal data
contained in the journal record. The record length is -1
(negative one) for the last call made by ARCHIVE
JOURNAL to IDMSAJNX.

(halfword) System-reserved area.

Journal record type
(4-byte alphanumeric
field)

Record types that IDMSAJNX places in the journal
record control block are summarized in the table below.
The figure that follows shows the layout for each of the
journal record types.

Journal record data Significant data contained in the journal record. The
layout of record data varies, based on the record type of
the journal record.

Chapter 7. User Exits 7-5

7.2 DB exits

Journal record layouts: The figures below display the layouts for each journal
record type. IDMSAJNX writes these records to the journal record control block:

Record type Purpose

ABRT Marks the abnormal termination of a transaction.

AFTR Records the after image of a database record.

AREA Records transaction access to a database area.

BFOR Records the before image of a database record.

BGIN Marks the start of a transaction.

CKPT Marks a commit for each transaction in a task.

COMT Marks the end of one recovery unit and the beginning of another.

ENDJ Marks the normal termination of a transaction.

RTSV Marks the end of an SQL savepoint and the beginning of another.

TIME The date and time the journal buffer was written to the journal
file.

USER A user-defined record type.

7-6 CA-IDMS System Operations

7.2 DB exits

Chapter 7. User Exits 7-7

7.2 DB exits

7-8 CA-IDMS System Operations

7.2 DB exits

 7.2.2 IDMSCLCX

 Entry point: IDMSCLCX

Link edit with: IDMSDBMS and IDMSUTIL

When link editing IDMSCLCX with IDMSDBMS and IDMSUTIL, perform the
following steps:

1. Relink IDMSDBMS, including IDMSDBMS and IDMSCLCX

2. Relink IDMSUTIL, including IDMSUTIL and IDMSCLCX

Description: IDMSDBMS and IDMSUTIL call this user-exit routine each time a
program requests a CALC key target page.

The IDMSCLCX exit routine receives database information and the CALC key for the
record. From this information, the exit routine can calculate the target-page value.

Chapter 7. User Exits 7-9

7.2 DB exits

Sample uses: IDMSCLCX can be called to perform a user-written CALC routine.
IDMSCLCX can:

■ Access database and CALC information passed to IDMSCLCX without calculating
a target page. To do this, the IDMSCLCX exit routine:

1. Reads information passed by control blocks

2. Prepares the system to execute the standard CALC routine by returning binary
zeros to the target-page field in the CALC key record control block

3. Returns control to IDMSDBMS

After control returns to IDMSDBMS, the standard CA-IDMS CALC routine
(IDMSCALC) is invoked if the target-page field contains binary zeros.

■ Compute a target CALC page. To do this, the IDMSCLCX user-exit routine:

1. Computes a target page by using:

– Database definitions from the CALC key record control block

– The actual CALC key value from the CALC key control block

2. Returns the computed target-page number to the system. This is
accomplished by placing the page number in the target-page field of the
CALC key record control block.

3. Returns control to IDMSDBMS.

The standard CA-IDMS CALC routine is not invoked for the record when the
target-page field returns with values other than binary zeros.

Considerations: When you define the IDMSCLCX routine to the operating system,
remember that the routine must be reentrant if it will be stored in:

■ OS/390 — The link pack area (LPA)

■ VSE/ESA — The shared virtual area (SVA)

Parameters: When IDMSCLCX is called, register 1 points to a parameter list that
contains two fullword address constants (ADCONs):

■ The first address constant contains the address of the CALC-key record control
block. This control block contains the information listed below.

7-10 CA-IDMS System Operations

7.2 DB exits

■ The second address constant contains the address of the CALC-key control block.
This control block contains the CALC-key value, which is alphanumeric of
varying length.

Field Field description

Target page (full word) Suggested page number for storage of the record
occurrence Initialized by the system to binary zeroes

High page (fullword) The number of the highest page on which the record
occurrence can be stored, as specified in the schema
WITHIN clause

Low page (fullword) The number of the lowest page on which the record
occurrence can be stored, as specified in the schema
WITHIN clause.

CALC-key length
(halfword)

The length, in bytes, of the CALC-key value

Record ID (halfword) The ID assigned to the record type in the schema.

Area name (16-byte
alphanumeric field)

The name of the area to which the record type is
assigned

 7.2.3 IDMSDPLX

 Entry point: IDMSDPLX

Link edit with: IDMSDBIO

Description: IDMSDBIO calls this routine:

■ At file open time

■ At file close time

■ At disk write time (twice for each disk write)

■ At the time of an I/O error (when the SYNAD exit is called)

At disk write time, control passes to the IDMSDPLX entry point immediately before
IDMSDBIO issues the WRITE. Then, immediately after the WRITE, control passes
again to IDMSDPLX before the #WAIT and CHECK macros are issued.

Sample uses: IDMSDPLX can be called to maintain duplicate database and/or
journal files. The responsibilities of the IDMSDPLX user-exit routine include:

■ Acquiring variable storage needed by the routine

■ Defining and allocating duplicate files

■ Opening, closing, and writing to the duplicate files

■ Managing I/O, recovery, and archival of the duplicate files

Chapter 7. User Exits 7-11

7.2 DB exits

Considerations: IDMSDBIO checks the availability of stack storage before calling
IDMSDPLX (and before executing a WRITE). If sufficient storage does not exist,
IDMSDBIO abends the task thread that is currently writing to the database or journal.
The TCE stack size should be increased if this type of abend recurs.

Call IDMSDPLX by means of the following instruction:

BALR R14, R15

Control is passed to the IDMSDPLX exit in 31-bit mode. Ensure the exit changes the
AMODE to 24-bit mode before issuing any I/O commands if EXCP-level I/O is not
being used. Then ensure that the exit restores the previous AMODE at the completion
of the I/O command.

The OS/390 operating system requires that all files be opened or closed by the address
space or partition's main task. If the IDMSDPLX exit will issue any OPEN or CLOSE
macros for duplex files, it is the user's responsibility to insure that affinity is set to the
CV's main task. This is especially important when multitasking is employed by the
CV. To set affinity:

■ If any DCBs or ACBs are opened by the exit, surround each OPEN with a pair of
#AFFINITY macros as shown below:

#AFFINITY SET,SCA=MAINTASK,RGSV=...

OPEN...

#AFFINITY RELEASE,RGSV...

Multiple OPENs may be coded between the two #AFFINITY macros and code
other than OPENs may be included, but no CV or DC macros may be coded in
the instruction path between the two #AFFINITY macros.

■ Similarly, any OS CLOSE macros must be enclosed between a pair of
#AFFINITY macros as shown below:

#AFFINITY SET,SCANUM=MAINTASK,RGSV=...

CLOSE...

#AFFINITY RELEASE,RGSV...

Multiple CLOSEs may be coded within a single pair of #AFFINITY macros but
no CV or DC macros may appear between them.

The 'RGSV=' parameter names any registers in the range 2 through 8, which should be
preserved across the #AFFINITY macro. For example, if you want to save registers
R2 through R8, the parameter would be coded like this:

,RGSV=(R2-R8)

Individual registers can be saved by coding the desired registers separated by a comma
(,):

,RGSV=(R3,R5)

Parameters: When the IDMSDPLX entry point is called, registers 1 and 13 point to
information:

7-12 CA-IDMS System Operations

7.2 DB exits

Register 1 points to a parameter list that contains the following information:

■ Parameter 1 — The exit function:

– 0 — File open

– 1 — File close

– 2 — After disk write

– 3 — Before disk write

– 4 — When the SYNAD exit is called

■ Parameter 2 — The address of the current file control block (FCB) or journal
control block (JCB).

The address (storage anchor) of user storage is given in the following locations:

– FCBUSER (fullword) in the FCB

– JCBUSER (fullword) in the JCB

■ Parameter 3 — The address of the global storage anchor (DMCUSR in the
DSECT) in the DMCL table (DMC).

■ Parameter 4 — The address of the current buffer memory area (BMA).

■ Parameter 5 — The address of the fullword of reentrant storage. The storage is
located in the work area of the IDMSDBIO variable information block (VIB).

■ Parameter 6 — The address of the file status block (FST).

Register 13 points to the current entry in the task's TCE stack (as when a database
procedure is called) for functions 0 through 3.

When function 4 "When the SYNAD exit is called", register 13 will point to 29 words
in 24-bit stack storage. No stack size checking will be in effect if a #GETSTK or
#CALL is executed for this function.

Registers R8 through R14 should be preserved by the duplex exit for all functions and
control should be returned through R14.

 7.2.4 IDMSIOXT

 Entry point: IDMSIOXT

Link edit with: IDMSDBIO

Description: IDMSDBIO calls this entry point before each disk read or write
operation.

Sample uses: The IDMSIOXT user exit can be called to capture I/O statistics
associated with a database file.

Chapter 7. User Exits 7-13

7.2 DB exits

Parameters: When IDMSIOXT is called:

■ Register 1 contains the address of a fullword that points to one of the following:

– File control block (FCB)

– Journal control block (JCB)

■ Register 4 contains:

– 0 — A read is being performed

– 4 — A write is being performed

 7.2.5 IDMSIOX2

This release offers a new DB exit that IDMSDBIO can call when it detects an I/O
error, after an I/O has completed, or before issuing certain calls or commands.

 Entry Point: IDMSIOX2

Link Edit with: IDMSDBIO

Description: IDMSDBIO calls this routine when it detects an I/O error, after an I/O
has completed (even when completed from the cache), or prior to issuing:

■ A file open command

■ A file close command

■ An I/O call (Both Read and Write)

■ A #WAIT/CHECK on an I/O call

This exit is NOT called for native VSAM files.

Sample uses: You can use this exit:

■ In place of or in addition to the exits: IDMSDPLX, IDMSJNL2, and IDMSIOXT.

■ To maintain a duplicate database and/or journal file.

■ To capture I/O statistics.

■ To replace the normal I/O calls that CA-IDMS issues with I/O calls issued by the
exit.

Calling the exit: This exit uses standard CA-IDMS/DC system mode calling
conventions. Use a #CALL statement to call this exit. You must compile the exit
with the #MOPT ENV=SYS macro. The entry point must be defined using a #START
macro and control returned using a #RTN macro.

You should code the #START macro with the MPMODE=CALLER option to reduce
call overhead and to preserve the current MPMODE lock, if any, that may be held by
the current task.

7-14 CA-IDMS System Operations

7.2 DB exits

Using the exit with XA systems: On XA systems, the exit is called in Amode
31. If the exit issues CA-IDMS/DC calls or when the control is returned, the same
Amode must be in effect.

Using the exit in multitasking systems: In a multitasking system, it is the exit's
responsibility to establish affinity on the correct TCB before issuing OPEN and
CLOSE macros. You can use the #AFFINITY macro for this.

The only resources locked for the current task (TCE) are the storage owned by the
current task, and in the case of an open or close call, the FCB/JCB. It is the
responsibility of the exit to control concurrent access to other resources.

To avoid putting CA-IDMS/DC into an opsys wait use the #WAIT macro on an ECB
before doing any opsys function that may wait on that ECB.

Shared or dataspace cache: If a file is defined to be in a shared cache (Parallel
Sysplex environment) or dataspace cache, IDMSDBIO continues to read from and
write to the cache even if the physical I/O is suppressed by the exit. Depending on
how you use the exit, this may or may not be desirable. For instance I/O's written to a
shadow file should not be written to a shared cache because that could corrupt the
primary file through another CV, but writing the same I/O's to a non-shared dataspace
cache may be desirable. It is the responsibility of the exit to disable undesirable
caching at open time. You can do this by setting the correct flags in #IOX2DS
parameter list.

Pages in cache buffer: If a page being read is in a cache buffer, the physical I/O
is bypassed. As a result, the calls to the Pre-Read and Pre-Read-Check exits is not
made. However the Post-Read exit is called with a flag set in the parameter list
indicating this condition.

Prefetch enabled: When Prefetch is enabled for a file, multiple reads may be
issued for a file before a CHECK is done. The work storage associated with an I/O
on the Pre-Read exit remains constant for the pre-read and post-read calls for the same
I/O, but other storage could change.

The Pre-Read exit precedes IDMSQSAM processing. If the Read is suppressed, it
bypasses IDMSQSAM processing as well as the normal Read. If IDMSQSAM finds
the record, the Pre-Check exit is still called, but the I/O on the primary file will have
completed. If IDMSQSAM is enabled and the IOX2 exit is waiting on any I/O, it may
negate the benefits of IDMSQSAM.

When I/O to a primary file does not require a check macro to be issued, for example,
VSAM under DOS or QSAM, the Pre-Check exit is called anyway. In this case, a
flag is set in the IOX2 parameter list indicating that the I/O is complete.

User anchor words: The exit is provided with an address of a work field at the
system level, another at the file level, and a third at the I/O level. The exit should not
rely on any of these work fields residing in a particular control block. The exit should
use the addresses provided in the parameter list.

Chapter 7. User Exits 7-15

7.2 DB exits

We recommend that the work fields at the system level and the file level be used with
the following rules:

■ The word is used to anchor storage, not to store data.

■ The storage should contain an 8-byte prefix:

– CL4'xxxx' — An eyecatcher unique to the storage.

– A(0) — A "next" address for future storage.

– 0X — User fields would follow.

■ The first exit would anchor its storage in the word provided by the exit. If
another exit also needed to anchor storage at the same level, it would follow the
chain of user storage blocks and chain its storage to the last block in the chain.

■ The four-byte eyecatcher should be unique to each block of storage, so an exit can
identify its own storage.

■ Once allocated a storage block should not be deleted, as this could break the
chain.

The I/O level work field remains constant for the life of an I/O, but it is not
guaranteed to last beyond the Post-I/O exit call. So you should not use this field to
chain storage as you would with the more permanent work fields. The concern is that
as storage comes, goes, and is reused, it is difficult to maintain a reliable chain.

You should not issue #GETSTG statements for each I/O call because this can affect
performance.

Register usage: Standard IDMS/DC conventions:

■ R15/R14 contain entry point and return addresses. These are automatically
handled by the #START and #RTN macros.

■ R15 — On Exit must contain a return code value.

■ R13 — Current stack pointer.

■ R12 — Base register for exit after #START.

■ R11 — A register automatically saved across DC calls.

■ R10 — CSA - Do not modify.

■ R9 — TCE - Do not modify.

■ R8 — R2 — Available. They were saved prior to calling IDMSIOX2; no
guarantee as to content.

■ R1 — Parameters - On entry.

■ R0 — No guarantee as to content.

Parameters: When the IDMSIOX2 exit is called, R1 points to a parameter list
described by the #IOX2DS copy book. The parameter list contains the following
information:

7-16 CA-IDMS System Operations

7.2 DB exits

■ A function code defining when the exit was called:

� — Pre File Open

1 — Pre File Close

2 — Pre Read

3 — Pre Read Check

4 — Post Read

5 — Read I/O Error

6 — Pre Write

7 — Pre Write Check

8 — Post Write

9 — Write I/O Error.

■ Flags that are used in some situations to coordinate control between IDMSDBIO
and IDMSIOX2.

■ The address of:

– A fullword associated with the system, for exit use.

– A fullword associated with the file, for exit use.

– The current FCB/JCB.

 – The IOP.

– A list of buffer addresses and RBNs to be read/written. The last pair is
marked with the X'80000000' bit in the buffer address.

– A work area reserved for the exit for the life of the I/O from Pre to Post I/O.

Return codes: On return from the exit, R15 should contain one of the following
values:

■ 0 — No Errors, Proceed with normal processing. Supported on all functions.

■ 4 — No Errors, Suppress next I/O function. Supported on the "Pre" functions; for
example, pre-open, pre-read, pre-check, etc.

■ 8 — I/O Error. Supported on I/O functions only. IDMSDBIO behaves as if an
I/O error had occurred on this file, returning a 30xx code to its caller.

■ 12 — Retry an I/O after an error. Supported on the I/O Error function only.

I/O error function: The IDMSIOX2 exit is called with the I/O Error function when
an I/O error occurs on the primary file. No information about the error is passed.

This function is provided so the IDMSIOX2 exit can Cleanup or Wait on a pending
I/O. You can also use this function to issue a request to retry the I/O. For example,
suppose this exit were being used for duplexing. When the function requests to try the
I/O in error again, the exit could suppress the I/O to the primary file when it retries
the I/O and satisfy it from the duplex file.

Suppressing I/O: With the IDMSIOX2 exit, it is possible to suppress the I/O
normally generated by IDMSDBIO. However it is the exit's responsibility to handle
the I/O itself.

Chapter 7. User Exits 7-17

7.2 DB exits

For example the Pre-Read exit is called passing the address of a buffer and the RBN
of the page that needs to be read into that file. The exit could issue the read to a
duplex file and suppress the read to the primary file.

When the Pre-Read-Check exit is called, the exit would #WAIT on the ECB associated
with its read. When complete, it could fill in the DBIO buffer and then suppress the
DBIO CHECK. IDMSDBIO would then behave as if it had read the block itself. The
Post-Read exit would not be needed in this case and could simply return. Or it could
verify that the contents were in sync with its own version of the page.

 7.2.6 IDMSJNL2

 Entry point: IDMSJNL2

Link edit with: IDMSDBIO

Description: IDMSDBIO calls this routine:

■ Once before the journal buffer is written to the standard journal file

■ Once after the journal buffer is written to the standard journal file, which lets the
exit know if the I/O to the standard journal file was successful

■ When the standard journal file is closed

Control passes to the IDMSJNL2 entry point before the journal buffer is written to the
standard journal file. At sites where an IDMSJNL2 user-exit routine is not used, the
journal buffer is written only to the standard journal file.

Sample uses: IDMSJNL2 can be used to write a duplicate journal file in order to:

■ Collect statistical information

■ Copy journal records as they are being written

■ Create a backup journal in case of a permanent I/O error on a disk journal file

To make output from an IDMSJNL2 user-exit routine available to the
ROLLBACK and ROLLFORWARD utility statements, compile a DMCL module
that defines an archive journal with a block size equal to the size of the blocks
written by the exit routine.

�� For more information on these utilities, refer to CA-IDMS Utilities.

Considerations: Output produced by an IDMSJNL2 user-exit routine cannot be
used by the ARCHIVE JOURNAL utility or for automatic recovery purposes.

The IDMSJNL2 user exit impacts the reentrancy of IDMSDBIO. If IDMSJNL2
performs an I/O function, the central version does not service any active transactions
until the I/O is completed.

7-18 CA-IDMS System Operations

7.2 DB exits

Parameters: When IDMSJNL2 is called, register 1 points to a parameter list that
contains the following information:

■ Parameter 1 — Points to an address constant that contains the address of the
journal control block. This is the only parameter passed if the high order bit is
on. The length of the journal control block is always fixed and equals the length
of the journal record, as defined in the DMCL. The journal control block contains
the information listed below:

Note: The journal control block resides in XA storage.

■ Parameter 2 — Indicates if the standard journal file I/O was successful (0) or
unsuccessful (X'00000BC3', which is equivalent to error code 3011).

Field Field description

Block length (halfword) The length, in bytes, of significant journal data (see
below) contained in the journal control block.

This length includes the block-length halfword and the
system-reserved-area halfword.

The block length is -1 (negative one) if the standard
journal file is being closed.

(halfword) System-reserved area.

Journal data (one or more
alphanumeric journal
records)

The journal records being written to the second journal
file:

■ The length of the journal data section is fixed. The
length equals the buffer size, as described for the
journal file in the DMCL, minus 4 bytes.

■ The length of actual data in this chapter is given in
the block length halfword (see above).

If the journal data written to the journal control
block does not completely fill the journal data
section, the rest of the section contains undefined
data.

Chapter 7. User Exits 7-19

7.3 DC/UCF exits

 7.3 DC/UCF exits

DC/UCF user exits allow the site to call site-specific system processing routines. You
must associate each user exit routine with a user-exit entry point. These entry points
are predefined by the system.

To include an DC/UCF user exit routine in the system:

1. Code the routine based on the information presented in this chapter.

2. Link edit the entry point with the DC/UCF module specified for the user exit
routine in this chapter.

At run time, the system calls a user exit routine by means of the predefined entry point
for the exit. After the exit routine is performed, control returns to the calling module.

If you do not link edit a given user-exit entry point with its DC/UCF module, the user
exit is bypassed at run time. In this case, system operations continue without
interruption.

DC/UCF user exits are listed in in the table below and described individually after the
table.

Entry point DC/UCF module Usage of exit

IDMSSVCX The CA-IDMS
SVC (or equivalent
module)

To capture transaction accounting statistics

OPTIXIT IDMSINTC To alter dynamically the location where
the request will be processed

OPTIQXIT IDMSINTC To alter dynamically so that an individual
SQL session can be routed to a specific
back-end CV

TCKREXIT DC/UCF startup
module

To monitor time-related events

WAITEXIT DC/UCF startup
module

To monitor operating system waits

WTOEXIT IDMSOS00 or the
DC/UCF startup
module

To review DC/UCF messages

WTOREXIT IDMSOS00 or the
DC/UCF startup
module

To modify operator communications

7-20 CA-IDMS System Operations

7.3 DC/UCF exits

 7.3.1 IDMSSVCX

 Entry point: IDMSSVCX

Description: IDMSSVCX is executed whenever an external request attempts to sign
on to any DC/UCF system using the CA-IDMS SVC. IDMSSVCX is called when the
external request attempts signon and is entered in the application program's address
space. For VM/ESA, IDMSSVCX is entered in the virtual machine that is running
DC/UCF.

The exit permits you to write information:

■ OS/390, VSE/ESA, and BS2000/OSD — To the extension of the external request
element (ERE) in the CA-IDMS SVC

■ VM/ESA — To the accounting interface for the VM/ESA system

The SVC exit can contain multiple routines that each update a new variable item in the
SVX (described below). Each routine should find the beginning of the SVX and then
add the value in SVXAMTUS to find the location at which a new item may be added.
Before adding an item, be sure that the total extension length will not exceed the value
in ESESVCXLN. Even the first routine in the exit must use the existing value for the
SVXAMTUS since some space in the extension may have been reserved for internal
CA-IDMS items.

The total length of all the items added by the SVC exit, including the 4-byte fixed
portion of each item, must be added together to calculate the value for the SVCXLEN
parameter on the #SVCOPT macro discussed in in Chapter 3, “Setting Up
Interpartition Communication and the SVC.”

Sample uses: IDMSSVCX can be used to:

■ Perform extended user processing of ERUS accounting data. For example,
checking the time of day to verify that the user/job is allowed to run at that time.

■ Extract information from online programs. For example, CICS accounting
information can be extracted from a CICS program.

■ Handle task statistics records. Information written to the ERE extension is passed
to DC/UCF, and the first 40 bytes of one item subsequently are written to the task
statistics record in the system log file. After the log file has been offloaded to an
archive file, data extracted by the IDMSSVCX exit can be used to identify, sort,
report on (using DC/UCF statistics reports), and otherwise manipulate task
statistics records.

If an item in the ERE extension has an item id of 'UA', the first 40 bytes of that
item are written to the system log file. If no item has an id of 'UA', then the first
40 bytes of the first item are used.

Task statistics must be enabled at system generation time, as discussed in in
Chapter 9, “Statistics.”

Chapter 7. User Exits 7-21

7.3 DC/UCF exits

ERE extension: The ERE extension consists of a 4 byte header followed by a
variable number of entries. The header and variable entries are defined by the SVX
DSECT available in the installed source member #SVXDS. The DSECT is shown
below:

��

��� ���

� SVX: SVC EXTENSION DSECT. �

� �

��� ���

��

SVX DSECT �8:�1:22 12/17/93 �3/�9/99

��

� THE SVC EXTENSION HAS ONE HEADER, AS DESCRIBED BELOW. �

� NOTE: TOTAL BYTES IN SVC EXTENTION IS STORED IN ESESVXLN. �

� SO, NBR OF FREE BYTES = ESESVXLN - SVXAMTUS. �

��

SVXAMTUS DS H AMOUT OF BYTES USED IN SVC EXTEN.

 DS H �UNUSED�

SVXFIXHL EQU �-SVXAMTUS LENGTH OF FIXED HEADER.

��

� THERE ARE N ITEMS WITHIN THE EXTENSION, N > OR = �. �

� �

� ADDRESS OF FIRST ITEM = A(ERE) + ESESOXOF + ESESOXLN + SVXFIXHL �

� ADDRESS OF NEXT ITEM = CURRENT_ADDR + SVXFIXIL + SVXITMLN �

� �

� "C" IN 1ST BYTE OF SVXITMID MARKS COMPUTER ASSOCIATES ITEMS. �

� USER ITEMS MUST NOT HAVE "C" IN 1ST BYTE OF THE ID. �

� �

� IF AN SVCX ITEM EXISTS WITH AN ID OF "UA", THE FIRST 4� BYTES OF �

� THAT ITEM'S DATA GETS WRITTEN IN THE TASK STATISTICS RECORD. �

� IF NO "UA" ITEM EXISTS, THE DATA FROM THE FIRST ITEMS GETS USED. �

� �

� BEFORE LAYING DOWN A NEW EXTENSION, MAKE SURE THAT YOU DON'T �

� EXCEED THE LENGTH STORED IN ESESVXLN. �

��

SVXITEM DS OH ONE ITEM.

SVXITMLN DS H LENGTH OF SVXITEMD.

SVXITMID DS CL2 ITEMS ID.

SVXUACCT EQU C'UA' ID LENGTH FOR USER ACCOUNTING DATA.

SVXFIXIL EQU �-SVXITEM LENGTH OF FIXED PART OF ITEM.

SVXITEMD DS OC ITEM DATA. LENGTH IS VARIABLE.

 EJECT

Considerations: A IDMSSVCX routine can be coordinated with the following two
numbered exits, which are detailed in 7.4.5, “System-invoked numbered exits” on
page 7-62.

■ Exit 5 (task termination exit I) can be invoked to extract accounting data at
run-unit signoff.

■ Exit 14 (bind run unit and ready area exit) can be invoked to perform security
checks when a BIND RUN UNIT or READY AREA statement is issued. For
example, exit 14 can cause a transaction to abort based on the job accounting
information collected through IDMSSVCX.

7-22 CA-IDMS System Operations

7.3 DC/UCF exits

IDMSSVCX can use:

 ■ Register 0

 ■ Register 3

■ Register 4 for non-OS/390 systems

 ■ Register 5

■ Register 10 for OS/390 systems

Parameters: The following registers pass values to IDMSSVCX:

■ Register 1 (OS/390, VSE/ESA, and BS2000/OSD) provides addressability to the
local request element (LRE).

Register 1 (VM/ESA) provides a parameter list of the following control blocks:

– Logical request element (LRE) address, at offset +0

– External request element (ERE) address, at offset +4

– External service element (ESE) address, at offset +8

– VM/ESA element (VME) address, at offset +12

■ Register 2 (OS/390, VSE/ESA, and BS2000/OSD) provides addressability to the
external service element (ESE).

■ Register 5 (OS/390) provides addressibility to the SVX.

■ Register 15 contains either of the following pieces of information:

– OS/390, VSE/ESA, and BS2000/OSD — Provides addressability to the
external request element (ERE)

– VM/ESA — Contains the entry-point address

 Return codes: None.

 7.3.1.1 IDMSSVCX examples

A sample IDMSSVCX macro appears below for OS/390, VSE/ESA, and VM/ESA
operating systems. The sample is also available in the installed CA-IDMS source
library. Tailor the sample for your operating system environment.

The exit routines in this sample macro extract information from the jobcard associated
with each external request unit signing on to the DC/UCF system.

Chapter 7. User Exits 7-23

7.3 DC/UCF exits

OS/390 Sample IDMSSVCX user exit

 MACRO

&NAME IDMSSVCX &VM=NO,&SVCXLEN=�,&VSE=NO

AIF ('&VM' EQ 'YES' AND '&VSE' EQ 'YES').ERROR

AIF ('&VM' EQ 'YES').VMXIT ? VM EXIT

AIF ('&VSE' NE 'YES').NOTVSE

��

� �

� ON ENTRY R1 = A(LRE) �

� R2 = A(ESE) �

� R13 = SAME AS WHEN SVC INVOKED �

� NOTE : FOR CICS THIS IS THE CSA ADDRESS �

� R15 = A(ERE) �

� R14 = RETURN ADDRESS �

� �

��

�

SVX@DTLN EQU 16 LENGTH OF DATA WE WANT TO STORE.

 USING ERE,R15

 USING ESE,R2

 USING LRE,R1

AIF ('&NAME' EQ '').VSE2

&NAME CSECT

 AGO .VSE2A

.VSE2 ANOP

IDMSSVCX CSECT

.VSE2A ANOP

 BALR R8,�

 USING �,R8

 PUSH USING

LA R5,ERE LOAD ERE BASE.

AH R5,ESESOXOF POINT R5 TO

 AH R5,ESESOXLN SVC EXTENSION.

 USING SVX,R5 (SVX)

LH R3,SVXAMTUS GET AMOUNT USED.

LA R4,�(R3,R5) POINT R4 TO UNUSED AREA.

 USING SVXITEM,R4 (SVXITEM)

AH R3,=AL2(SVX@DTLN+SVXFIXIL) ADD IN WHAT WE WANT.

CH R3,ESESVXLN IF USED+WANTED > SVX LENG

BH SVX@END THEN: END WITHOUT ADO.

STH R3,SVXAMTUS NEW AMOUNT USED.

MVC SVXITMLN,=AL2(SVX@DTLN) ITEM'S LENGTH.

MVC SVXITMID,=AL2(SVXUACCT) ITEM'S ID.

�

��

� GET THE ACCOUNT INFORMATION AND MOVE IT INTO THE DATA AREA �

� OF THE SVXITEM THAT R4 POINTS TO. �

��

�

 SPACE

CLC =C'VME',LREID COMMING FROM VM ?

 BNE DSVX�1 NO

�

 USING VME,R1

MVC SVXITEMD(8),VMEUSER MOVE VM USER NAME

 MVI SVXITEMD+8,C' '

MVC SVXITEMD+9(SVX@DTLN-9),SVXITEMD+8 CLEAR REST

 USING LRE,R1

7-24 CA-IDMS System Operations

7.3 DC/UCF exits

 BR R14 EXIT

�

DSVX�1 DS �H

L R3,X'14' LOAD CURRENT COMREG AREA

 LTR R3,R3 VALID ADDRESS?

BZR R14 ..NO GOOD - MUST BE LOST

�

 USING COMREG,R3 (COMREG)

L R3,JAPART GET JOB PARTITION TABLE

 LTR R3,R3 ANY ADDRESS?

BZR R14 NO - EXIT

 DROP R3 (COMREG)

�

 USING JPT,R3 (JPT)

CLC JPTUFLD,=CL16' ' ANY USER = DATA

BER R14 ..NO - EXIT

CLC JPTUFLD,=16X'��' IS MEMORY NULL

BER R14 ..YES - NO FIELDS TO MOVE

MVC SVXITEMD(SVX@DTLN),JPTUFLD MOVE ACCOUNT INFO TO EXT

�

SVX@END DS �H

 BR R14 RETURN

�

 LTORG

�

 #REGEQU

 MAPCOMR

�

JPT DSECT 1�/21/99

JPTUFLD EQU JPT+56 16 BYTES OF ACCOUNTING INFO

�

 COPY #LREDS

 COPY #EREDS

 COPY #ESEDS

 COPY #SVXDS

 MEXIT

.NOTVSE ANOP

 COPY #EREDS

 COPY #ESEDS

 COPY #SVXDS

 #REGEQU

IDMSSVCX CSECT

���

� This code is executed for non VSE/ESA and VM/ESA systems. It supports the

� the following systems: OS/39� (all flavors) and FUJITSU (MSP/MSPAE).

�

� Register utilization is as follows:

� R1 - Points to the LRE.

� R2 - Points to the ESE.

� R3 - Used to get to the account info.

� R4 - Used to return to IDMSMSVC.

� R5 - Points to the SVX.

� R1� - Points to the SVXITEM.

� R12 - Bases the exit code.

� R14 - Must not be modified.

� R15 - Points to the ERE.

�

���

Chapter 7. User Exits 7-25

7.3 DC/UCF exits

 SPACE

SVX�1��� DS �H

 BALR R12,�

 USING �,R12

 USING ESE,R2

USING SVX,R5 R5 POINTS TO THE SVC EXTENSION

 SPACE

B SVX�11�� Skip over the eyecatcher.

DC CL8'IDMSSVCX' Eyecatcher for dump reading.

 SPACE

SVX�11�� DS �H

LH R3,SVXAMTUS GET AMOUNT USED.

LA R1�,�(R3,R5) POINT R1� TO UNUSED AREA.

USING SVXITEM,R1� R1� POINTS TO SVXITEM

AH R3,=AL2(SVX@DTLN+SVXFIXIL) ADD IN WHAT WE WANT.

CH R3,ESESVXLN IF USED + WANTED > SVX LENGTH

BH SVX@END THEN: END WITHOUT ADO.

STH R3,SVXAMTUS NEW AMOUNT USED.

MVC SVXITMLN,=AL2(SVX@DTLN) ITEM'S LENGTH.

MVC SVXITMID,=AL2(SVXUACCT) ITEM'S ID.

 SPACE

��

� Get the account information and move it into the data area �

� of the SVXITEM that R1� points to. �

��

 SPACE

 L R3,X'B4'(,R9) PICKUP A(JSCB)

 L R3,X'1�4'(,R3) R3---JCT-X'1�'

 LA R3,X'1�'(,R3) R3---JCT

 L R3,X'28'(,R3) R3---ACT

 SPACE

SRL R3,8 MOVE ADDR OVER

MVC SVXITEMD(SVX@DTLN),X'31'(R3) MOVE ACCOUNT INFO TO EXT

 SPACE

SVX@END DS �H

BR R4 RETURN TO IDMSMSVC

SVX@DTLN EQU 4� LENGTH OF DATA WE WANT TO STORE.

 DROP R5,R1� (SVX) (SVXITEM)

 MEXIT

.VMXIT ANOP

���

� SVC EXIT FOR VM STARTS HERE. WHEN INVOKED BY IDMSUSVC REGISTER

� CONTENTS WILL BE AS FOLLOWS:

� R1 ─� PLIST OF FOLLOWING FORMAT

� +� A(LRE)

� +4 A(ERE)

� +8 A(ESE)

� +C A(VME)

� R13 ─� STANDARD OS SAVE AREA

� R14 ─� RETURN ADDRESS

� R15 ─� ENTRY POINT ADDRESS

�

� WE WILL ESTABLISH R12 AS BASE REGISTER WITHIN OUR CODE.

� PUSH AND POP ASSEMBLER DIRECTIVES ARE USED TO SAVE AND

� RESTORE THE BASE.

�

� RETURN IS MADE VIA R14. SET R15 TO A NON-ZERO VALUE IF

� THE RUN UNIT IS TO BE ABENDED.

���

7-26 CA-IDMS System Operations

7.3 DC/UCF exits

 SPACE

 PUSH USING

 ENTRY SVCEXIT

 USING SVCEXIT,R15

SVCEXIT B VM&SYSNDX

 DC H'&SVCXLEN'

VM&SYSNDX DS �H

 DROP R15

 LR R12,R15 ESTABLISH BASE

 USING SVCEXIT,R12

L R3,4(R1) R3 ─� ERE

L R4,8(R1) R4 ─� ESE

 USING ERE,R3

 USING ESE,R4

 LA R5,ERE

 AH R5,ESESOXOF

 AH R5,ESESOXLN

 USING SVX,R5 (SVX)

LH R2,SVXAMTUS GET AMOUNT USED.

LA R5,�(R2,R5) POINT R5 TO UNUSED AREA.

 DROP R5

 USING SVXITEM,R5 (SVXITEM)

AH R2,=AL2(SVX@DTLN+SVXFIXIL) ADD IN WHAT WE WANT.

CH R2,ESESVXLN IF USED+WANTED > SVX LENG

BH SVX@END THEN: END WITHOUT ADO.

STH R2,SVXAMTUS NEW AMOUNT USED.

MVC SVXITMLN,=AL2(SVX@DTLN) ITEM'S LENGTH.

MVC SVXITMID,=AL2(SVXUACCT) ITEM'S ID.

L R2,�(R1) R2 ─� LRE

 USING LRE,R2

���

� R5 NOW POINTS AT THE ERE EXTENSION ITEM. �

� INSERT ADDITIONAL CODE TO PROCESS THE REQUEST AND SET �

� THE RETURN CODE FOLLOWING THIS COMMENT BLOCK. �

���

SVX@END DS �H

 LA R15,�

 BR R14

 DROP R12,R2,R3,R4,R5

 POP USING

.ERROR ANOP

MNOTE 8,'&VSE= AND &VM= CAN NOT BE BOTH SPECIFIED AS YES'

 MEND

/�

7.3.1.2 Steps to add IDMSSVCX to your system

Perform the following steps to add IDMSSVCX to your system:

1. Code SVC exit parameters

2. Modify the sample IDMSSVCX macro

3. Make the IDMSSVCX module available

4. Link edit IDMSSVCX

Chapter 7. User Exits 7-27

7.3 DC/UCF exits

Code SVC exit parameters: Code SVC exit parameters appropriate to your
operating system to specify that the IDMSSVCX exit will be used at the site:

�� For more information on SVC exit parameters, see documentation for your system's
CA-IDMS SVC macro in Chapter 3, “Setting Up Interpartition Communication and
the SVC” .

Modify the sample IDMSSVCX macro: Modify the sample IDMSSVCX macro
to add any site-specific logic such as site-coded validation or accounting routines.

Make the IDMSSVCX module available: Make IDMSSVCX available, as
follows:

■ OS/390 — Assemble IDMSSVCX, creating an object module and link edit it with
IDMSMSVC.

■ VSE/ESA — Assemble IDMSSVCX and create an object module. Relink
IDMSDSVC, as described in Chapter 3, “Setting Up Interpartition Communication
and the SVC.” JCL to create the IDMSSVCX object appears below: VSE/ESA
IDMSSVCX assembly

Operating System SVC Exit Parameter

OS/390 Specify the following parameter in the #SVCOPT macro

■ SVCXLEN; specify, in bytes, the length of the ERE
extension

VSE/ESA Specify the following parameter in the #DEFSVC macro when
IDMSVCTB is generated:

■ SVCXLEN; specify, in bytes, the length of the ERE
extension

VM/ESA Specify the following parameters in the IDMSSVCX macro:

 ■ VM=YES

■ SVCXLEN; specify, in bytes, the length of the ERE
extension

BS2000/OSD Specify the following parameters in the #SVCOPT macro:

■ SVCXLEN; specify, in bytes, the length of the ERE
extension

7-28 CA-IDMS System Operations

7.3 DC/UCF exits

// DLBL idmslib,

// EXTENT ,nnnnnn

// LIBDEF �,SEARCH=idmslib.sublib

// DLBL IJSYSPH,'WRK1WORK',�

// EXTENT SYSPCH,wrkvol,,,ssss,llll

 ASSGN SYSPCH,DISK,VOL=wrkvol,SHR

// OPTION DECK

// EXEC ASMA9�,SIZE=128K

PUNCH 'CATALOG IDMSSVCX.OBJ R=YES'

 IDMSSVCX VSE=YES

 END

/�

 CLOSE SYSPCH,PUNCH

// DLBL IJSYSIN,'WKR1WORK'

// EXTENT SYSIPT,wrkvol

 ASSGN SYSIPT,DISK,VOL=wrkvol,SHR

// EXEC LIBR,PARM='A S=idmslib.sublib'

 CLOSE SYSIPT,READER

/�

■ VM/ESA — Create an Assembler source module that invokes the IDMSSVCX
macro. This module can contain other exits to simplify maintenance.

■ BS2000/OSD — Assemble IDMSSVCX, creating an object module and link edit it
with IDMSBSVC.

Link edit IDMSSVCX

1. Recompile #SVCOPT with the SVCXLEN parameter set to the extension length
required

2. Relink the SVC module with the following INCLUDE statements: OS/390
IDMSSVCX link edit

Item Description

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

llll number of tracks (CKD) or block (FBA) of the disk
extent

nnnnnn volume serial identifier of appropriate disk volume

ssss starting track (CKD) or block (FBA) of disk extent

wrkvol volume for work files

Chapter 7. User Exits 7-29

7.3 DC/UCF exits

INCLUDE OBJLIB(#SVCOPT) SVC options compiled in Step 1

INCLUDE OBJLIB(IDMSMSVC) or from loadlib if ZAPs are applied to the

 linked module

INCLUDE OBJLIB(IDMSSVCX) SVC exit code

ENTRY IGC### Entry point

NAME IGC###(R) SVC module name with REPLACE option

3. CAIRIM the new SVC module into the system

4. Start up the DC system

 7.3.2 OPTIXIT

 Entry point: OPTIXIT

Link edit with: IDMSINTC

Description: Allows CICS transactions to modify the IDMSOPTI structure
dynamically so that only the current task thread is affected by the changes.

IDMSINTC copies the static IDMSOPTI structure into dynamic storage and passes it
to the user routine, which may alter it based on site-specific rules.

Sample uses: OPTIXIT can be used to alter the location where the request will be
processed dynamically.

Considerations: This exit routine is for use under CICS only. Link OPTIXIT into
IDMSINTC with the external name OPTIXIT.

This exit is passed information about an IDMS request and where it is be routed by
default. The exit may update the routing information in order to direct it to another
location.

The first and third parameters passed to the exit contain information about the request:
the address of the subschema control block and the caller's registers at the time the
request was issued, respectively.

The second and fourth parameters contain routing information. The second parameter
is the address of an OPTI structure generated either from parameters in the CICSOPT
macro or from the SYSCTL file specified in the CICSOPT SYSCTL parameter. The
fourth parameter may contain addresses of OPTI structures that were generated from
additional SYSCTL files, if the MAXCVNO parameter was specified in the CICSOPT
macro. The fourth parameter is always passed, even if no MAXCVNO was specified.

In order to direct the request unit to a different back-end CV, the exit must update the
OPTI structure passed in the second parameter. It may use information passed in the
fourth parameter to determine which back-end CVs are available.

7-30 CA-IDMS System Operations

7.3 DC/UCF exits

Registers at entry

■ Register 1 points to a four-word parameter list described below

■ Register 13 points to a savearea for use by the exit

■ Register 14 points to the return address

■ Register 15 points to the entry address

 Return codes: None.

Parameters: Four parameters are passed to the exit:

Fullword 1 The address of the application program's subschema control block (SSC).

Fullword 2 The address of an OPTI structure describing where the request will be
routed unless overridden by the exit. (The OPTI structure is described by
DSECT #OPIDS.)

Fullword 3 The address of the savearea where the registers at entry to the interface
were saved.

Fullword 4 The address of an array of fullwords whose contents are:

Fullword 1 The MAXCVNO value specified in the CICSOPT macro.
This value indicates the number of additional OPTI addresses
present in this array.

Fullwords 2-4 Three words that are available for use by the exit. The
contents of these fields are preserved across invocations of the
OPTIXIT (and the OPTIQXIT if present). These three words
can be used to retain information such as the last CV to which
a request unit was routed. On the first call to the exit, the
value of the first word will be the address of the default OPTI
structure (see Fullword 5). The value of the remaining two
words will be zero. These words are shared by both exits.

Fullword 5 The address of the default OPTI structure. This is the OPTI
structure generated from the CICSOPT macro or from the file
whose DDNAME is specified by the SYSCTL parameter of
the CICSOPT macro.

Remaining Fullwords Occurs depending on MAXCVNO. Addresses of
the OPTI structures generated for additional SYSCTL files. If
the MAXCVNO value is 0, no additional addresses are present
in the array.

 7.3.3 OPTIQXIT

 Entry point: OPTIQXIT

Link edit with: IDMSINTC

Chapter 7. User Exits 7-31

7.3 DC/UCF exits

Description: This exit is invoked whenever an IDMS SQL session is initiated
within the CICS environment. It allows the default OPTI structure to be dynamically
modified so that an individual SQL session can be routed to a specific back-end CV.

IDMSINTC copies the static IDMSOPTI structure into dynamic storage and passes it
to the user routine, which may alter it based on site-specific rules.

Considerations: This exit routine is for use under CICS only. Link OPTIQXIT
into IDMSINTC with the external name OPTIQXIT.

This exit is passed information about an IDMS request and where it is be routed by
default. The exit may update the routing information in order to direct it to another
location.

The first and third parameters passed to the exit contain information about the request:
the address of the subschema control block and the caller's registers at the time the
request was issued, respectively.

The second and fourth parameters contain routing information. The second parameter
is the address of an OPTI structure generated either from parameters in the CICSOPT
macro or from the SYSCTL file specified in the CICSOPT SYSCTL parameter. The
fourth parameter may contain addresses of OPTI structures that were generated from
additional SYSCTL files, if the MAXCVNO parameter was specified in the CICSOPT
macro. The fourth parameter is always passed, even if no MAXCVNO was specified.

In order to direct the request unit to a different back-end CV, the exit must update the
OPTI structure passed in the second parameter. It may use information passed in the
fourth, fifth, and sixth parameters to determine which back-end CVs are available to
service this request.

Registers at entry

■ Register 1 points to a six-word parameter list described below

■ Register 13 points to a savearea for use by the exit

■ Register 14 points to the return address

■ Register 15 points to the entry address

 Return codes: None.

Parameters: Six parameters are passed to the exit:

Fullword 1 The address of the application program's subschema control block (SSC).

Fullword 2 The address of an OPTI structure describing where the request will be
routed unless overridden by the exit. (The OPTI structure is described by
DSECT #OPIDS.)

Fullword 3 The address of the savearea where the registers at entry to the interface
were saved.

7-32 CA-IDMS System Operations

7.3 DC/UCF exits

Fullword 4 The address of an array of fullwords whose contents are:

Fullword 1 The MAXCVNO value specified in the CICSOPT macro.
This value indicates the number of additional OPTI addresses
present in this array.

Fullwords 2-4 Three words that are available for use by the exit. The
contents of these fields are preserved across invocations of the
OPTIQXIT (and OPTIXIT if present). These three words can
be used to retain information such as the last CV to which a
request unit was routed. On the first call to the exit, the value
of the first word will be the address of the default OPTI
structure (see Fullword 5). The value of the remaining two
words will be zero. These words are shared by both exits.

Fullword 5 The address of the default OPTI structure. This is the OPTI
structure generated from the CICSOPT macro or from the file
whose DDNAME is specified by the SYSCTL parameter of
the CICSOPT macro.

Remaining Fullwords Occurs depending on MAXCVNO. Addresses of
the OPTI structures generated for additional SYSCTL files. If
the MAXCVNO value is 0, no additional addresses are present
in the array.

Fullword 5 The SQL command information block (DSECT #SQLCIB) that describes
the statement being executed.

Fullword 6 The contents of this field depend on the type of SQL statement being
executed as indicated by the SQCIBCMD field of the command
information block (Fullword 5):

■ If the SQL statement being executed by the application is a
CONNECT (SQCIBCMD value 7), then Fullword 6 contains the
address of the dictionary name to which the SQL session is
connecting.

■ If the SQL statement being executed by the application is an
EXECUTE IMMEDIATE (SQCIBCMD value 14), then Fullword 6
contains the address of the text string representing the statement to be
executed. If the text represents a CONNECT statement, the dictionary
name to which the session is connecting is also in the text string. (The
length of the text string is in SQCIBCML.)

■ If the SQL statement being executed is neither a CONNECT nor an
EXECUTE IMMEDIATE, Fullword 6 is zero.

Chapter 7. User Exits 7-33

7.3 DC/UCF exits

 7.3.4 TCKREXIT

 Entry point: TCKREXIT

Link edit with: DC/UCF startup module

Description: Called whenever the ticker interval expires. The ticker interval is
established at system generation time by the TICKER INTERVAL parameter of the
SYSTEM statement.

Sample uses: Exit 10 can be used to monitor time-related events.

Considerations: This exit routine must not destroy the contents of registers 8
through 15. Note that no save area is passed in register 13.

Call this exit by using the following instruction:

BALR R14,R15

 Parameters: None.

 Return codes: None.

 7.3.5 WAITEXIT

 Entry point: WAITEXIT

Link edit with: DC/UCF startup module

Description: Called whenever DC/UCF is about to issue an operating system
WAIT, indicating that no DC/UCF tasks are ready to execute.

Sample uses: Exit 11 can be used to monitor the activity of the DC/UCF system.

Considerations: The exit routine can use registers 0 through 5 only. Note that no
save area is passed in register 13.

Call this exit by using the following instruction:

BALR R14,R15

Parameters: One parameter is passed: the operating system event control block
(ECB) list.

 Return codes: None.

7-34 CA-IDMS System Operations

7.3 DC/UCF exits

 7.3.6 WTOEXIT

 Entry point: WTOEXIT

Link edit with:

■ On OS/390, VM/ESA, or BS2000/OSD systems: the DC/UCF startup module or
the system dependent module (RHDCOMVS, RHDCOCMS, IDMSOBS2
respectively).

■ On VSE/ESA: link WTOEXIT or WTOREXIT as a standalone phase in a library
that is searched at CV startup. You must name the phases WTOEXIT or
WTOREXIT to be recognized by the CV.

Link edit WTOEXIT by using an INCLUDE statement as summarized in the table
below:

Description: WTOEXIT is called each time a message is routed to the console.
Control is passed to the entry point before the message is written to the console. By
using this user exit, it is possible to:

■ Review, alter, redirect, and suppress the text of messages written to the operator's
console.

■ (Under OS/390) Review, alter, redirect, and suppress the WTO DESC and
ROUTCDE values of all messages written to the operator's console.

■ (Under BS2000/OSD) redirect messages sent in batch or interactive mode:

– Batch mode — Redirect messages to SYSLST

– Interactive mode — Redirect messages to SYSOUT (when DC/UCF is
running interactively)

Operating system INCLUDE statement

OS/390 INCLUDE lib(WTOEXIT) �1�
INCLUDE lib(WTOREXIT) �1�

VSE/ESA PHASE WTOEXIT, �1�
INCLUDE WTOEXIT
PHASE WTOREXIT, �1�
INCLUDE WTOREXIT

VM/ESA INCLUDE lib(WTOEXIT) �1�
INCLUDE lib(WTOREXIT) �1�

BS2000/OSD //INC-MOD LIB=lib,ELEM=WTOEXIT
//INC-MOD LIB=lib,ELEM=WTOREXIT

Note:
�1� - lib is the ddname (OS/390, VM/ESA) or filename (BS2000/OSD) for the library
that contains the exit routine.

Chapter 7. User Exits 7-35

7.3 DC/UCF exits

Sample uses: WTOEXIT can be called to perform the following activities:

■ Automatically offload the disk journal file when it becomes full. To do this,
WTOEXIT:

1. Evaluates messages, looking for messages indicating that the disk journal file
is full

2. Passes control to a subroutine that invokes ARCHIVE JOURNAL

3. Receives control back from the subroutine

4. Returns control to the system

Sample WTOEXIT routines that perform this processing are shown later in this
discussion for OS/390 and VSE/ESA operating systems.

■ Perform site-specific functions in response to particular DC/UCF messages.

Note that altered system messages are not, under any circumstances, written to the
DC/UCF log file. System messages are written to the log as they are originally
issued.

Considerations: To call WTOEXIT in local mode, link edit the WTOEXIT entry
point with IDMSOS00. Calling conventions for local mode are the same as for central
version.

Parameters: When the WTOEXIT entry point is called, register 1 contains the
address of the WTO message control block. The layout of this control block depends
on the operating system in use:

■ OS/390, VSE/ESA and VM/ESA — The table below shows the layout of this
control block:

Field Field description

Message length (halfword
initialized to 130 by the
startup module)

The length, in bytes, of the message to the console.

(halfword) OS/390 and VSE/ESA only: System-reserved area.

Message text (132-byte
alphanumeric field)

The text of the message to the console.

Do not adjust the message-length field in the WTO
control block, even if the text length changes when the
text is altered. When the return code is set to zero,
DC/UCF adjusts the field by ignoring trailing blanks.

WTO DESC (halfword) OS/390 and VSE/ESA only: The value of the WTO
descriptor code that would be in effect if the standard
OS/390 or VSE/ESA WTO macro were invoked.

WTO ROUTCDE
(halfword)

OS/390 and VSE/ESA only: The value of the WTO
route code that would be in effect if the standard
OS/390 or VSE/ESA WTO macro were invoked.

7-36 CA-IDMS System Operations

7.3 DC/UCF exits

■ BS2000/OSD — The table below shows the layout of this control block.
Additionally, R2 points to an 8-byte field containing the BS2000 message ID,
right-justified.

Return codes: Before returning to the calling module, WTOEXIT places a return
code of 0 or 4 in register 15:

■ 0 — The message text (altered or unchanged) is to be written to the console.

■ 4 — The message text is not to be written to the console.

Examples: Sample Assembler WTOEXIT user-exit routines appear below for
OS/390 and VSE/ESA operating systems. For a sample VM/ESA WTOEXIT routine,
see CA-IDMS Installation and Maintenance Guide - VM/ESA.

In each of these routines, WTOEXIT tests each DC/UCF message to see if it requests
the ARCHIVE JOURNAL utility statement:

■ If the message does request ARCHIVE JOURNAL, the exit routine:

1. Invokes the ARCHIVE JOURNAL utility statement

2. Sets register 15 to 4, indicating that the DC/UCF message is not to be written
to the console

■ If the message does not request ARCHIVE JOURNAL, the exit routine sets
register 15 to 0, routing the message to the console.

Field Field description

Message length (halfword
initialized to 130)

The length, in bytes, of the message to the console.

(halfword) System-reserved area.

Message text (132-byte
alphanumeric field)

The text of the message to the console.
Do not adjust the message-length field in the WTO
control block, even if the text length changes when the
text is altered. When the return code is set to zero,
DC/UCF adjusts the field by ignoring trailing blanks.

Chapter 7. User Exits 7-37

7.3 DC/UCF exits

OS/390 Sample WTOEXIT user exit

 WTOEXIT CSECT WRITE TO OPERATOR EXIT

 PRINT NOGEN

 R� EQU �

 R1 EQU 1

 R2 EQU 2

 R3 EQU 3

 R4 EQU 4

 R5 EQU 5

 R6 EQU 6

 R7 EQU 7

 R8 EQU 8

 R9 EQU 9

 R1� EQU 1�

 R11 EQU 11

 R12 EQU 12

 R13 EQU 13

 R14 EQU 14

 R15 EQU 15

 USING WTOEXIT,R15 ESTABLISH ADDRESSABILITY

 STM R14,R12,12(R13) SAVE REGISTERS

ST R13,SAVEAREA+4 AND SET BACKWARD

LA R12,SAVEAREA AND FORWARD CHAINS

 ST R12,8(R13)

 LR R13,R12

LR R3,R15 R3 IS PROGRAM BASE

 DROP R15

 USING WTOEXIT,R3

LR R4,R1 R4 IS MESSAGE CONTROL BLOCK

 USING WTOMCB,R4 BASE

CLC WTOMTEXT(13),=C'IDMS DC2�5��3' IF JOURNAL MESSAGE

 BE RUNAJNL

CLC WTOMTEXT(13),=C'IDMS DC�5���1' IF LOG MESSAGE

 BE TSTFULL

 B RETURN

 RUNAJNL OPEN (JESRDR,(OUTPUT))

 OPEN (AJNLJOB,(INPUT))

 NEXTCARD GET AJNLJOB,CARD

 PUT JESRDR,CARD

 B NEXTCARD

 CLOSES CLOSE (JESRDR)

 CLOSE (AJNLJOB)

 B RETURN

 TSTFULL LA R6,WTOMTEXT

 LH R5,WTOMLEN

 AR R6,R5

 LA R5,WTOMTEXT+1�

 NEXCHAR LA R5,1(R5)

 CR R5,R6

 BH RETURN

 CLI �(R5),C'%'

 BNE NEXCHAR

 S R5,=F'2'

 PACK PNUM,�(2,R5)

 CP PNUM,=P'25'

 BNL RUNPLOG

 B RETURN

RUNPLOG OPEN (JESRDR,(OUTPUT))

7-38 CA-IDMS System Operations

7.3 DC/UCF exits

 OPEN (PLOGJOB,(INPUT))

 NEXTONE GET PLOGJOB,CARD

 PUT JESRDR,CARD

 B NEXTONE

 CLOSE2 CLOSE (JESRDR)

 CLOSE (PLOGJOB)

 RETURN L R13,SAVEAREA+4 RESTORE OLD SAVE AREA

 LM R14,R12,12(R13) AND REGISTERS

XR R15,R15 R15 TO ZERO FOR RETURN CODE

 BR R14

 SAVEAREA DC 18F'�'

 PNUM DS PL2

 CARD DS CL8�

JESRDR DCB BLKSIZE=8�,LRECL=8�,RECFM=F,DDNAME=JESRDR,DSORG=PS, X

 MACRF=PM

 AJNLJOB DCB DDNAME=AJNLJOB,DSORG=PS,MACRF=GM,EODAD=CLOSES

 PLOGJOB DCB DDNAME=PLOGJOB,DSORG=PS,MACRF=GM,EODAD=CLOSE2

 LTORG

 WTOMCB DSECT WTO MESSAGE CONTROL BLOCK

 WTOMLEN DS H MESSAGE LENGTH

 WTOMFLGS DS H MESSAGE CONTROL SYSTEM FLAGS

 WTOMTEXT DS CL132 MESSAGE TEXT

 WTOMDESC DS H MESSAGE DESCRIPTOR CODE

 WTOMROUT DS H MESSAGE ROUTE CODE

 END

VSE/ESA Sample WTOEXIT user exit

TITLE 'WTO EXIT FOR DOS ' ����1���

WTOEXIT CSECT ����2���

� �� ����3���

� R2 - XPCCB ����4���

� R3 - WTOEXIT BASE REGISTER ����5���

� R4 - WTO MESSAGE CTL BLOCK ����6���

� R5 & R6 - WORK REGS ����7���

� R7 - SPLWTO - POWER SPOOL ����8���

� R8 & R9 - WORK REGS ����9���

� R1�- DATA TO BE SENT TO POWER VIA SPL ���1����

� R11- DATA TO BE RCVD FROM POWER VIA SPL ���11���

� �� ���12���

� #REGEQU ���13���

R� EQU � ���14���

R1 EQU 1 ���15���

R2 EQU 2 ���16���

R3 EQU 3 ���17���

R4 EQU 4 ���18���

R5 EQU 5 ���19���

R6 EQU 6 ���2����

R7 EQU 7 ���21���

R8 EQU 8 ���22���

R9 EQU 9 ���23���

R1� EQU 1� ���24���

R11 EQU 11 ���25���

R12 EQU 12 ���26���

R13 EQU 13 ���27���

R14 EQU 14 ���28���

R15 EQU 15 ���29���

WTOEXIT CSECT ���3����

 ENTRY WTOEXIT ���31���

Chapter 7. User Exits 7-39

7.3 DC/UCF exits

 USING WTOEXIT,R15 ESTABLISH ADDRESSABILITY ���32���

 STM R14,R12,12(R13) SAVE REGISTERS ���33���

ST R13,SAVEAREA+4 AND SET BACKWARD ���34���

LA R12,SAVEAREA AND FORWARD CHAINS ���35���

 ST R12,8(R13) ���36���

 LR R13,R12 ���37���

LR R3,R15 R3 IS PROGRAM BASE ���38���

 DROP R15 ���39���

 USING WTOEXIT,R3 ���4����

LR R4,R1 R4 IS MESSAGE CONTROL BLOCK ���41���

 USING WTOMCB,R4 BASE ���42���

 MVI SPLIND,X'��' INITIALIZE SWITCH ���43���

CK2�5��3 CLC WTOMTEXT(13),=C'IDMS DC2�5��3' IF JOURNAL MESSAGE ���44���

BNE CK5���1 NOT JNL -- CHECK LOG ���45���

 LA R9,AJNLJOB ���46���

 LA R5,AJNLLEN ���47���

 MVC JOBNA,JNAME ���48���

 B CONNECT ���49���

CK5���1 CLC WTOMTEXT(13),=C'IDMS DC�5���1' IF LOG MESSAGE ���5����

 BNE RETURN ���51���

TSTFULL LA R6,WTOMTEXT ���52���

 LH R5,WTOMLEN ���53���

 AR R6,R5 ���54���

 LA R5,WTOMTEXT+1� ���55���

NEXCHAR LA R5,1(R5) ���56���

 CR R5,R6 ���57���

 BH RETURN ���58���

 CLI �(R5),C'%' ���59���

 BNE NEXCHAR ���6����

 S R5,=F'2' ���61���

 PACK PNUM,�(2,R5) ���62���

 CP PNUM,=P'25' ���63���

 BL RETURN ���64���

RUNPLOG DS �H ���65���

 LA R9,PLOGJOB ���66���

 LA R5,PLOGLEN ���67���

 MVC JOBNA,PNAME ���68���

OI SPLIND,X'4�' SET LOOK FOR PLOG IND ���69���

� ��� ���7����

� � ���71���

� ISSUE IDENTIFY & CONNECT TO POWER � ���72���

� � ���73���

� ��� ���74���

CONNECT DS �H ���75���

 LA R7,SPLWTO ���76���

USING SPLWTODS,R7 POINT TO PWRSPL ���77���

 LA R2,WTOXPCCB ���78���

USING IJBXPCCB,R2 POINT TO XPCCB ���79���

LA R1�,IJBXSUSR POINT TO DATA TO BE SENT ���8����

 USING PXUUSER,R1� ���81���

LA R11,IJBXRUSR POINT TO DATA TO BE RCVD ���82���

 USING PXPUSER,R11 ���83���

 XPCC FUNC=IDENT,XPCCB=WTOXPCCB ���84���

CLM R15,1,X'�8' ERROR- R15 LT 8 SAYS OK ���85���

BO SPOOLERR RC OF 8 SAYS NO GOOD ON ID ���86���

 XPCC FUNC=CONNECT,XPCCB=WTOXPCCB ���87���

 LTR R15,R15 CONNECT AVAILABLE? ���88���

BZ CONNOK YET- DON'T HAVE TO WAIT ���89���

CLM R15,1,X'�8' ERROR- R15 = 8 SAYS NO GOOD ���9����

7-40 CA-IDMS System Operations

7.3 DC/UCF exits

BNL SPOOLERR R15 = 4 SAYS WAIT FOR POWER TO POST ���91���

 SR R6,R6 ���92���

BUSY DS �H ���93���

 SETIME 5,TECB POST ECB ���94���

WAIT TECB WAIT 5 SECONDS ���95���

 TM IJBXCECB+2,X'8�' CONN MADE?? ���96���

 BO CONNOK ���97���

 LA R6,1(R6) ���98���

CH R6,=H'5' WAIT 5 SECONDS 5 TIMES ���99���

BL BUSY WAIT 5 MORE ��1�����

B TERM NO CONNECT - GO TERMINATE ��1�1���

CONNOK DS �H ��1�2���

OI SPLIND,X'8�' SET GOOD CONNECT SWITCH ��1�3���

TM SPLIND,X'4�' LOOK FOR PLOG IN QUEUE? ��1�4���

 BZ SUBMIT ��1�5���

� ��� ��1�6���

� � ��1�7���

� CHECK FOR PLOG JOB ALREADY IN RDR QUEUE � ��1�8���

� IF ONE EXISTS, DON'T SUBMIT ANOTHER � ��1�9���

� � ��11����

� ��� ��111���

LOK4PLOG DS �H ��112���

 PWRSPL TYPE=UPD,FUNC=DISPLAY,JOBN=PNAME,QUEUE=RDR,REQ=CTL, X��113���

 SPL=SPLWTO ��114���

MVI PXUBTYP,PXUBTSPL CHECK FRO PLOG JOB IN RDR ��115���

 MVI PXUACT1,� ��116���

 STCM R7,7,IJBXADR ��117���

 LA R15,SPLGSLEN ��118���

 ST R15,IJBXBLN ��119���

 XPCC XPCCB=WTOXPCCB,FUNC=SENDR ��12����

LTR R15,R15 ZERO RC? ��121���

BNZ SPOOLERR NO ��122���

 LA R6,IJBXSECB ��123���

WAIT (R6) WAIT FOR COMPLETION OF SENDR ��124���

 CLI IJBXREAS,� ANY ERRORS? ��125���

 BNE SPOOLERR ��126���

CLI PXPRETCD,� RC OF � SAYS PLOGJOB ALREADY IN RDR ��127���

 BE DISC ��128���

CLI PXPRETCD,X'�4' NO PLOG JOBS FOUND? ��129���

 BNE SPOOLERR ��13����

CLI PXPFBKCD,X'�B' NO PLOG JOBS FOUND? ��131���

 BNE SPOOLERR ��132���

� ��� ��133���

� � ��134���

� ISSUE OPEN TO POWER USING SPL � ��135���

� � ��136���

� ��� ��137���

SUBMIT PWRSPL TYPE=UPD,SPL=SPLWTO,REQ=PUT,QUEUE=RDR ��138���

 MVI PXUBTYP,PXUBTSPL ��139���

 MVI PXUACT1,� ��14����

MVI PXUSIGNL,� USE SPL FOR PUT OPEN REQUEST ��141���

 STCM R7,7,IJBXADR ��142���

 LA R15,SPLGLEN ��143���

 ST R15,IJBXBLN ��144���

OI IJBXIND,IJBXM8� SET LIST TYPE ��145���

 XPCC XPCCB=WTOXPCCB,FUNC=SENDR ��146���

LTR R15,R15 ZERO RC? ��147���

BNZ SPOOLERR NO ��148���

 LA R6,IJBXSECB ��149���

Chapter 7. User Exits 7-41

7.3 DC/UCF exits

WAIT (R6) WAIT FOR COMPLETION OF SENDR ��15����

 CLI IJBXREAS,� ANY ERRORS? ��151���

 BNE SPOOLERR ��152���

 CLI PXPRETCD,� RC OK? ��153���

 BNE SPOOLERR ��154���

� ��� ��155���

� � ��156���

� MOVE JOB TO POWER RDR QUEUE � ��157���

� � ��158���

� �� ��159���

SETADDR DS �H ��16����

 STCM R9,7,IJBXADR ��161���

OI IJBXIND,IJBXM8� SPECIFY PROPER BUFFER TYPE ��162���

 ST R5,IJBXBLN STORE LENGTH ��163���

MVI PXUBTYP,PXUBTNDB MOVE BUFF TYPE DATA ��164���

MVI PXUACT1,PXUATEOD SET EOD INDICATOR ��165���

 MVC SPLGJB,JOBNA MOVE JOBNAME ��166���

 XPCC XPCCB=WTOXPCCB,FUNC=SENDR ��167���

 LTR R15,R15 ��168���

 BNZ SPOOLERR ��169���

 LA R6,IJBXSECB ��17����

WAIT (R6) WAIT FOR COMPLETION OF SENDR ��171���

 CLI IJBXREAS,� ANY ERRORS? ��172���

 BNE SPOOLERR ��173���

 CLI PXPRETCD,� RC OK? ��174���

 BNE SPOOLERR ��175���

 CLI PXPFBKCD,� FEEDBACK OK? ��176���

 BNE SPOOLERR ��177���

B DISC YES -- GET OUT ��178���

SPOOLERR DS �H ADD ANY ERROR HANDLING HERE ��179���

 PDUMP SPLWTO,BUFEND ��18����

TM SPLIND,X'8�' WAS CONNECT DONE ? ��181���

 BNO RETURN ��182���

� ��� ��183���

� � ��184���

� GO ISSUE DISC & TERMINATE TO POWER � ��185���

� � ��186���

� ��� ��187���

DISC DS �H ��188���

 XPCC XPCCB=WTOXPCCB,FUNC=DISCONN GO DISCONNECT ��189���

LTR R15,R15 ERROR ON DISC???? ��19����

BNZ RETURN YES -- JUST RETURN ��191���

TERM DS �H ��192���

 XPCC XPCCB=WTOXPCCB,FUNC=TERMIN SAY GOODBYE ��193���

RETURN DS �H RESTORE OLD SAVE AREA ��194���

L R13,SAVEAREA+4 RESTORE OLD SAVE AREA ��195���

 LM R14,R12,12(R13) AND REGISTERS ��196���

XR R15,R15 R15 TO ZERO FOR RETURN CODE ��197���

 BR R14 ��198���

PNAME DC CL8'PLOGJOB ' ��199���

JNAME DC CL8'AJNLJOB ' ��2�����

JOBNA DC CL8' ' ��2�1���

SAVEAREA DC 18F'�' ��2�2���

� ORECBA DS A ��2�3���

� ORREPA DS A ��2�4���

PNUM DS PL2 ��2�5���

TECB TECB ��2�6���

AJNLJOB DC A(8�,�),CL8�'� $$ JOB JNM=AJNLJOB,CLASS=A,PRI=9,DISP=D,U���2�7���

 SER=CULLDBA' ��2�8���

7-42 CA-IDMS System Operations

7.3 DC/UCF exits

DC A(8�,�),CL8�'� $$ LST CLASS=Z' ��2�9���

DC A(8�,�),CL8�'// JOB AJNLJOB S851CC�7S��' ��21����

DC A(8�,�),CL8�'// EXEC PROC=DBDCLIB' LIBDEFS ��211���

DC A(8�,�),CL8�'// EXEC PROC=DBDCAJNL' AJNL DLBL+EXEC ��212���

 DC A(8�,�),CL8�'/&&' ��213���

DC A(8�,�),CL8�'� $$ EOJ' ��214���

AJNLLEN EQU �-AJNLJOB ��215���

PLOGJOB DC A(8�,�),CL8�'� $$ JOB JNM=PLOGJOB,CLASS=A,PRI=9,DISP=D,U���216���

 ,USER=CULLDBA' ��217���

DC A(8�,�),CL8�'� $$ LST CLASS=Z' ��218���

DC A(8�,�),CL8�'// JOB PLOGJOB S851CC�7S��' ��219���

DC A(8�,�),CL8�'// EXEC PROC=DBDCLIB' LIBDEFS ��22����

DC A(8�,�),CL8�'// EXEC PROC=DBDCPLOG' PLOG DLBL+EXEC ��221���

 DC A(8�,�),CL8�'/&&' ��222���

DC A(8�,�),CL8�'� $$ EOJ' ��223���

PLOGLEN EQU �-PLOGJOB ��224���

SPLIND DC XL1'��' '8�' MEANS CONNECT DONE '4�' LOOK4PLOG ��225���

SPLWTO PWRSPL TYPE=GEN,JOBN=JOBNA,PRFX=WTO,QUEUE=RDR,REQ=PUT, X��226���

 USERID=CULLDBA,OPT=NOWAIT ��227���

WTOXPCCB XPCCB APPL=WOTEXIT,TOAPPL=SYSPWR, X��228���

 REPAREA=(WTOBUF,2��) ��229���

WTOBUF DC CL2��' ' ��23����

BUFEND EQU � ��231���

WTOMCB DSECT WTO MESSAGE CONTROL BLOCK ��232���

WTOMLEN DS H MESSAGE LENGTH ��233���

WTOMFLGS DS H MESSAGE CONTROL SYSTEM FLAGS ��234���

WTOMTEXT DS CL132 MESSAGE TEXT ��235���

WTOMDESC DS H MESSAGE DESCRIPTOR CODE ��236���

WTOMROUT DS H MESSAGE ROUTE CODE ��237���

 MAPXPCCB ��238���

SPLWTODS PWRSPL TYPE=MAP ��239���

 END WTOEXIT ��24����

 7.3.7 WTOREXIT

 Entry point: WTOREXIT

Link edit with:

■ On OS/390, VM/ESA, or BS2000/OSD systems: the DC/UCF startup module or
the system dependent module (RHDCOMVS, RHDCOCMS, IDMSOBS2
respectively).

■ On VSE/ESA systems: link a standalone phase named WTOREXIT, which
includes only the exit code.

Link edit WTOREXIT by using an INCLUDE statement, as summarized earlier in this
chapter for the WTOEXIT user exit.

Description: The DC/UCF startup module calls this user exit each time the system
is ready to solicit an operator command.

To notify DC/UCF that an operator command is present, WTOREXIT:

1. Places the length and text of the command in the WTOR reply area. This is true
for commands either issued by an operator or generated by the exit routine.

Chapter 7. User Exits 7-43

7.3 DC/UCF exits

2. Posts a reply event control block (ECB) to notify the DC/UCF that an operator
command is present:

■ OS/390, VM/ESA and BS2000/OSD — By performing an operating-system
POST to set the reply ECB completion code to 240

■ VSE/ESA — By performing an operating system POST

Posting of the reply ECB causes DC/UCF to process the operator command placed
in the WTOR reply area.

After processing the command, DC/UCF clears the reply ECB and the WTOR
reply area. DC/UCF is again ready to solicit an operator command, which in turn
prompts another call to the WTOREXIT entry point.

Sample uses: The WTOREXIT user-exit routine can be used to:

■ Review and optionally alter commands before they reach the DC/UCF system.

■ Solicit operator commands from the console.

■ Generate site-specific operator commands.

■ Disallow operator commands. To accomplish this, the WTOREXIT routine uses
MSGACON addresses (see parameter descriptions, below).

Having WTOREXIT generate commands is especially useful when direct
operator-to-system communication is not allowed. Even when direct
operator-to-system communication is allowed, the WTOREXIT routine can solicit
operator commands from the console and/or generate its own operator commands and
pass them to DC/UCF.

BS2000/OSD: The WTOREXIT is used during startup to allow SYSTEM startup
overrides to be entered from the SYSDTA system file (which is easier than from the
console).

VSE/ESA Systems: Under VSE/ESA the WTOREXIT can be used to intercept and
reply to immediate WTOR requests. It can reply to a general operator prompt, but
cannot suppress the outstanding operator prompt. It cannot intercept or suppress the
OC EXIT.

Considerations: For details on how DC/UCF allows operators to enter console
commands when WTOREXIT is not linked, see CA-IDMS System Tasks and Operator
Commands.

Parameters: When the WTOREXIT entry point is called:

■ Register 0 contains the address of a reply event control block (ECB).

■ Register 1 contains the address of the WTOR reply area to which operator
commands are written. The table below shows the layout of the WTOR reply
area:

7-44 CA-IDMS System Operations

7.3 DC/UCF exits

■ BS2000/OSD — register 2 points to an 8-byte field containing the BS2000
message ID, right-justified.

The WTOREXIT routine can save the addresses of the reply ECB and the WTOR
reply area for future use.

Alternatively, WTOREXIT can get the addresses from the symbol MSGACON. To do
this, the WTOREXIT routine must have a VCON for the symbol MSGACON. When
WTOREXIT is link edited with the DC/UCF startup module, this VCON is resolved to
contain the addresses of two fullwords. These two fullwords contain the addresses of
the reply ECB and the WTOR reply area.

Return codes: WTOREXIT returns either 0 or 4 in register 15.

■ 0 — Suppress issuing of WTOR command:

– OS/390, VM/ESA, and BS2000/OSD — Disallows direct operator-to system
communication by suppressing the DC/UCF console outstanding-response
message.

– VSE/ESA — Allows the exit to reply to a WTOR request instead of
prompting the operator console.

Typically, WTOREXIT sets register 15 to 0 when the exit routine solicits its own
operator commands and passes them to the DC/UCF system.

■ 4 — Allows direct operator-to-system communication:

– OS/390, VM/ESA, and BS2000/OSD — By directing the DC/UCF
outstanding-response message to the console

– VSE/ESA — By allowing an immediate WTOR command to be issued.

If the WTOREXIT user-exit routine sets register 15 to 4, the routine cannot
review or alter the text of future operator commands before the commands reach
the DC/UCF system. This is because the exit is never called again.

Examples: A sample WTOREXIT user exit for an OS/390 system appears below.
This exit routine:

1. Suppresses the DC/UCF outstanding-response message

2. Solicits operator commands from the console

3. Passes to DC/UCF the resultant operator commands

Field Field description

Reply length (halfword) The length, in bytes, of the reply.

Reply text (alphanumeric,
varying length)

The text of the reply message.

Chapter 7. User Exits 7-45

7.3 DC/UCF exits

This WTOREXIT user exit could include additional code to alter the text of acquired
operator commands before passing the commands to the ECB.

7-46 CA-IDMS System Operations

7.3 DC/UCF exits

OS/390 Sample WTOREXIT user exit

 ���

 � SAMPLE WTOREXIT �

 ���

 � �

 � This routine is intended to serve as a sample WTOREXIT routine only. �

 � It disables the standard CV WTOR routine and replaces it with a �

 � different WTOR. �

 � �

 � In order to be asynchronous with the main CV task, this routine �

 � attaches an OS subtask that waits for operator responses. �

 � �

 � Note the following: �

 � �

 � 1. Typically, the responses from the operator would be screened �

 � or otherwise processed by WTOREXIT before being passed to �

 � the CV. In this example, operator responses are passed to the �

 � CV without being reviewed or processed by the WTOREXIT user exit. �

 � �

 � �

 ���

 WTORCSCT CSECT

 DC CL8'WTORSAMP'

 �

 #REGEQU

 EJECT

 WTORCSCT CSECT

 ENTRY WTOREXIT

 WTOREXIT STM R14,R12,12(R13)

 LR R12,R15 Establish addressability

 USING WTOREXIT,R12

STM R�,R1,SAVEPARM Save input parameters

LTR R�,R� Is this an immediate WTOR?

BZ WTOR2�� Yes; do not suppress

 �

 � The above test for R�=� is only relevant to IDMS-DC systems, and

 � applies to special WTORs that prompt for startup parameter

 � overrides. In that case, DC should be allowed to issue the WTOR,

 � so that register 15 will be set to 4.

 �

 WTOR1�� L R1,WTORECBA Clear ECB and

 XC �(4,R1),�(R1) then

 WTOR1�1 LM R14,R12,12(R13) return

SR R15,R15 Do not perform standard WTOR

 BR R14

 SPACE 3

 WTOR2�� LM R14,R12,12(R13 Return and allow the

LA R15,4 WTOR to be issued by CV/DC

 BR R14

 DROP R12

 EJECT

 ATTNXIT STM R14,R12,12(R13) Save registers

 LR R12,R15 Establish addressability

 USING ATTNXIT,R12

 ATTNXIT1 WTOR 'SPECIAL PROMPT',WTORREP,WTORMSGL,WTORECB

WAIT ECB=WTORECB Wait for reply

XC WTORECB,WTORECB Clear reply ECB

L R5,WTORECBA If ECB is still posted,

Chapter 7. User Exits 7-47

7.3 DC/UCF exits

TM �(R5),X'4�' then prior message not yet

 BO ATTNXNO processed

L R4,WTORREPA Point to reply area

 LH R3,�(,R4) Get length

LA R5,WTORMSGL Get input length

CR R3,R5 Do not exceed buffer length

 BNL �+6

 LR R5,R3

SH R5,=H'1' Subtract 1 for MVC

BM �+8 but do not do it if length=�

EX R5,MVCREPLY Move reply string

 AH R5,=H'1' Fix length

STH R5,�(,R4) Give to user

 L R1,WTORECBA Post user

 POST (1),24�

 B ATTNXIT1

 ATTNXRTN LM R14,R12,12(R13)

 BR R14

 ATTNXNO WTO 'LAST MESSAGE NOT YET PROCESSED'

 B ATTNXIT1

 �

 MVCREPLY MVC 2(�-�,R4),WTORREP

 DROP R12

 EJECT

 ���

 � �

 � NONREENTRANT AREAS �

 � �

 ���

 WTORREP DC CL1��' ' WTOR REPLY AREA.

 WTORMSGL EQU 1�� MAX LENGTH FOR WTOR REPLY.

 WTORECB DC F'�' POSTED WHEN WTOR IS DONE.

 SAVEPARM DS �F START OF 2 WORDS TO SAVE R�, R1.

 WTORECBA DS A SAVE ECB ADDRESS FOR WTOR.

 WTORREPA DS A SAVE REPLY STRING ADDRESS FOR WTOR.

 ATCHDONE DC X'��' FLAG SET ONCE INITIALIZED.

 END

 ���

7-48 CA-IDMS System Operations

7.4 Numbered exits

 7.4 Numbered exits

Numbered exits are user exits that you define by means of the RHDCUXIT module.
RHDCUXIT is loaded at system startup as part of the nucleus and as part of the batch
and non-TP monitor interfaces. Numbered exits are divided into two types, as
described in the table below:

Flow of control: When a numbered user-exit routine is executed:

1. Control passes to the exit-routine entry point

2. The user exit routine is performed

3. Control returns to the calling module

Execution mode of the exit routine: When you code a numbered exit routine,
you must consider the execution mode for the exit routine. Numbered exit routines
can be defined to execute either in user or in system mode. Considerations for each
mode are given in 7.4.4, “Installing numbered exits in the system” on page 7-56.

The following sections describe:

■ Calling conventions for all numbered exits

■ The #MOPT, #START, #RTN, and #GETSTK macros

■ Calling user-invoked exits

■ Installing numbered user exits in the system

 ■ System-invoked exits

Type of exit Description

System-invoked exits
(Exits 0 through 255)

System-invoked exits provide control over selected
DC/UCF functions such as signon, signoff, and security
checking.
DC/UCF determines the routine that calls the exit.
These exits are invoked at a predefined logical point in
an DC/UCF module. For example, the signon routine
calls exit 1 (the signon exit).

User-invoked exits
(Exits 256 and above)

User-invoked exits can be invoked by a site-written
Assembler program.
For example, if you have added exit 256 to your
system, an Assembler program at your site can call this
exit by means of a #XIT statement.

Chapter 7. User Exits 7-49

7.4 Numbered exits

7.4.1 Calling conventions for numbered exits

The routine that calls a numbered exit is determined by whether the exit is a
system-defined or a user-defined exit.

The calling conventions that you use for a user-exit routine determine the registers that
are available to the exit routine. You can use either DC/UCF calling conventions or
IBM calling conventions. Consult IBM documentation for information about IBM
calling conventions.

The table below describes DC/UCF calling conventions and also gives general calling
conventions that apply when you use either IBM or DC/UCF calling conventions.
You use either these conventions or standard IBM conventions to call a given
numbered exit routine. This table also describes general calling conventions that apply
under either DC/UCF or IBM calling conventions.

7-50 CA-IDMS System Operations

7.4 Numbered exits

Calling conventions Description

DC/UCF calling
conventions

When you use these calling conventions, you must use the
#START macro to begin the exit routine and the #RTN
macro to end the exit routine.

On entry to the exit routine, the following registers contain
information:

■ Register 13 contains the address of the next available
entry in the TCE stack. The value in this register may
only be changed through the use of CA-IDMS macros,
for example #GETSTK, described below.

On XA machines, the TCE stack is located in XA
storage. This means that the exit routine has to run in
Amode 31. If it switches to Amode 24, the TCE stack
is not addressable anymore. Therefore, all DB and
DC calls must be done in Amode 31.

■ Register 12 contains the base address.

■ Register 10 contains the address of the common
system area (CSA). The value in this register must
not be modified.

■ Register 9 contains the address of the task control
element (TCE). The value in this register must not be
modified.

General calling
conventions

(Apply under DC/UCF
and under IBM calling
conventions)

These calling conventions apply to all numbered exits.

On entry to the numbered exit, register 1 points to a
two-word parameter list:

■ First word — The address of a fullword containing the
exit number.

■ Second word — Either the address of an exit-specific
parameter list or 0 (zero) if no parameters are passed.

■ On return from a system-invoked exit, register 15
contains the return code (if any). Only routines
executed in system mode can process these return
codes.

7.4.2 Macros required for DC/UCF calling conventions

When you use DC/UCF calling conventions to call a user exit, you must use these
macros:

■ #MOPT — Required if a user exit is to run in system mode

■ #START — Use to begin the user exit routine

Chapter 7. User Exits 7-51

7.4 Numbered exits

■ #RTN — Use to end a user exit routine and return control to the calling routine

■ #GETSTK — Use in a system mode exit to acquire storage from the TCE stack
area; this can be useful in preserving reentrancy

 7.4.2.1 #MOPT macro

The #MOPT macro sets up the options for the issuing module. The only code that
should appear prior to #MOPT is 'TITLE', comments, or source macro definitions.

 Syntax

��─┬─────────┬─#MOPT ─┬────────────────────┬─┬────────────────────┬───────────��

└─ label ─┘ └─ CSECT=csect-name ─┘ └─ ,ENV= ─┬─ SYS ──┬─┘

└─ USER ─┘

 Parameters

CSECT=
Generates a named CSECT and a constant of the CSECT name. Csect-name
specifies the name that will be generated for the CSECT statement and a 'DC
CL8' of that name for identification.

ENV=
Indicates a DC/UCF system module (SYS) or a user module (USER). The macro
sets certain globals for system modules to ensure proper calling sequence
generation.

 7.4.2.2 #START macro

The #START macro must be the first instruction in a user-exit routine that uses
DC/UCF calling conventions. Syntax and syntax rules for the #START routine are
provided below, followed by considerations that apply at sites using multitasking
support.

 Syntax

��── label #START ─┬────────────┬─ MPMODE= ─┬─ ANY ────┬──────────────────────��

└─ INTERNAL ─┘ ├─ DB ─────┤

├─ DC ─────┤

├─ CALLER ─┤

├─ DRIVER ─┤

└─ USER ───┘

 Parameters

INTERNAL
If omitted, generates an external entry point. The value coded in the label field of
the macro is the name used for the entry point.

MPMODE
Applies only at multitasking sites.

When included in a #START macro, the MPMODE clause specifies the
MPMODE to be assigned to the exit routine. At a multitasking site, you must

7-52 CA-IDMS System Operations

7.4 Numbered exits

specify an MPMODE if the routine runs in system mode (ENV=SYS is specified
in the #MOPT macro) and an external entry point is to be generated.

ANY
The exit routine can assume any MPMODE.

ANY is appropriate only for fully-reentrant routines that do not update storage
associated with another task and that do not access control blocks that may be
updated by another task. Typically, ANY mode is required for:

■ User exit 14
■ User exit 15
■ User exit 23
■ User exits 27, 28, and 29
■ User exit 31

DB
The exit routine runs in DB mode. DB mode is appropriate for routines that
reference system-wide database resources, such as system lock tables and
currency tables.

DC
The exit routine runs in DC mode. DC mode is appropriate when the exit
routine only references control blocks held by task executing the routine (for
example, TCE, LTE, SSC, VIB, and so forth). It assumes the exit routine
does not reference system-wide DB control blocks.

Typically, DC mode is required for:

■ User exits 0 through 9
■ User exit 12
■ User exit 13
■ User exit 16
■ User exits 19 through 22
■ User exits 24, 25, and 26
■ User exit 30

CALLER
The exit routine can assume the MPMODE of the caller. CALLER means
that the program does not do any specific DB- or DC-related activities.
Therefore, the MPMODE does not need to be changed from that of the
calling program.

DRIVER
The exit routine runs in DRIVER mode. All the CA-IDMS line drivers (for
example, VTAM and UCF) run in DRIVER mode. Exits that need to access
driver-related control blocks should run in this mode.

Typically, DRIVER mode is required for user exits 17, 18, and 32.

USER
The exit routine runs in USER mode. USER mode is appropriate for user
programs with storage protection enabled; for example, user-invoked
numbered exits.

Chapter 7. User Exits 7-53

7.4 Numbered exits

Considerations: When determining which MPMODE to assign, remember that:

■ A system-mode exit routine that uses IBM calling conventions should always be
assigned an MPMODE of DC.

■ Any exit routine that uses DC/UCF calling conventions should be assigned an
MPMODE consistent with the control blocks that the routine accesses.

�� For detailed coding considerations for multitasking sites, see Chapter 8, “Extended
Addressing and Multitasking.”

Examples: Establish an entry point with the name XTEP1:

XTEP1 #START

Start a numbered user-exit routine without establishing an entry point:

XTEP4 #START INTERNAL

 7.4.2.3 #RTN macro

The #RTN macro terminates a routine and returns control to the calling routine.
#RTN must be the last instruction executed in a user-exit routine that uses DC/UCF
calling conventions. The #RTN macro must execute in Amode 31.

 Syntax

��──┬─────────┬─ #RTN ──��

└─ label ─┘

Parameters: Inclusion of a label is optional.

Example: In the following sample #RTN macro, the macro is labeled RTRN1:

RTRN1 #RTN

 7.4.2.4 #GETSTK macro

The #GETSTK macro allows the issuing program to acquire a number of fullwords
from the current stack area pointed to by Register 13. The #GETSTK macro must
execute in Amode 31.

 Syntax

7-54 CA-IDMS System Operations

7.4 Numbered exits

��──┬─────────┬─ #GETSTK ─┬─ (register-number) ─┬─────────────────────────────�

└─ label ─┘ ├─ variable-name ─────┤

└─ =fullword-number ──┘

 �──┬───────────────────────────────┬───�

└─ ,REG= ─┬─ register-number ─┬─┘

└─ 11 ← ────────────┘

 �──┬─────────────────────┬───�

└─ ,DBLWD= ─┬─ NO ──┬─┘

└─ YES ─┘

 �──┬──────────────────────┬──��

└─ ,CLEAR= ─┬─ NO ← ─┬─┘

└─ YES ──┘

 Parameters

register-number
Is the register that contains the value of the number of fullwords.

variable-name
Specifies the symbolic name of a halfword or fullword field that contains the
value of the number of fullwords.

fullword-number
Specifies the number of fullwords preceded by an equal sign (that is, specify =2
for 2 fullwords).

REG=register-number
Indicates the register in which DC/UCF will return the address of the fullwords
requested. Registers 12, 13 and 14 are reserved. Register 11 is the default.

DLWD=NO/YES
Specifies whether the stack address returned should be aligned (YES) or not
aligned (NO) on a double word boundary.

CLEAR=NO/YES
Specifies whether the stack area should be initialized to nulls (YES) or not
initialized (NO). NO is the default.

7.4.3 User-invoked numbered exits

When you write a user-invoked exit routine, you assign the routine a unique number.
The number can be 256 or higher. Information about return codes for user-invoked
numbered exits is provided below, followed by information about calling user-invoked
exits by means of the #XIT macro.

Return codes: Each site determines the meanings of return codes passed back in
register 15 to a user-invoked exit routine. However, return codes 0 (zero) and 4 are
reserved, and have the following meanings:

■ 0 — The exit routine did not encounter any errors.

■ 4 — The requested exit is not implemented at the site.

Chapter 7. User Exits 7-55

7.4 Numbered exits

Site-written Assembler programs can call user-invoked numbered exits. To call a
user-invoked exit, the Assembler program uses a #XIT macro.

#XIT exit syntax

��──┬─────────┬─ #XIT exit-number ─┬────────────────────────────────────┬─────��

└─ label ─┘ └─ ,PARM=parameter-register-pointer ─┘

#XIT exit parameters

exit-number
Specifies the number of the #DEFXIT macro that defines the exit being called.

PARM
Specifies a parameter list (if any) to be passed to the exit routine.
Parameter-register-pointer can be either a register pointing to the parameter list or
the symbolic name of the parameter list.

Examples: Call exit 256 without passing any parameters:

#XIT 256

Call exit 256 and pass a parameter list in register 1:

#XIT 256,PARM=(R1)

7.4.4 Installing numbered exits in the system

To install a numbered user exit in the system:

1. Code the user-exit routine based on information in this chapter.

2. Install the numbered exit by coding a #DEFXIT macro. Include the #DEFXIT
macro in the system's RHDCUXIT source module. Assemble and link edit the
RHDCUXIT module.

3. Define the exit routine to the system by using a system generation PROGRAM
statement. You can temporarily define the program to the system by using the
DCMT VARY PROGRAM command.

�� For information about defining the exit routine to the system, see CA-IDMS
System Generation or CA-IDMS System Tasks and Operator Commands.

Steps 1 and 2 are discussed below.

7.4.4.1 Step 1: Code a #DEFXIT macro

The #DEFXIT macro specifies information about a numbered exit, including the name
of the exit's entry point and user-exit routine. All #DEFXIT macros for a system are
included in the RHDCUXIT module for the system.

You must code a #DEFXIT macro for each numbered exit:

■ Place #DEFXIT macros in numerical order in the RHDCUXIT module, according
to the number of each associated exit.

7-56 CA-IDMS System Operations

7.4 Numbered exits

■ Include placeholder #DEFXIT macros for numbered exits that are not currently
used. This is necessary because each #DEFXIT macro's position in the
RHDCUXIT source module determines the numbered exit to which the macro
applies.

For example, the sample #DEFXIT macros below install system-invoked exits 1 and 5
in the DC/UCF system. If the first placeholder #DEFXIT macro were deleted from
the sample RHDCUXIT module, the module would add exits 0 and 4 to the DC/UCF
system:

 RHDCUXIT CSECT

 ┌───┐

 │ . │

 │ . │

 │ . │

 │ ┌─────────┐ │

┌─┼────→#DEFXIT ,│ EXIT �� │

Placeholders │ │ └─────────┘ │

for unused ───┤ │ #DEFXIT MODE=SYSTEM,CALL=DC,EP=XSON,AMODE=ANY EXIT �1 │

user exits │ │ ┌─────────┐ │

└─┼────→#DEFXIT ,│ EXIT �2 │

│ │#DEFXIT ,│ EXIT �3 │

│ │#DEFXIT ,│ EXIT �4 │

 │ └─────────┘ │

│ #DEFXIT MODE=SYSTEM,CALL=DC,EX=XTASK,AMODE=ANY EXIT �5 │

 │ . │

 │ . │

 │ . │

 │ │

 └───┘

Chapter 7. User Exits 7-57

7.4 Numbered exits

 Syntax

��── #DEFXIT MODE= ───�

 �──┬─ USER,NAME=program─name ───┬──��

└─ SYSTEM,CALL= ─┬─ DC ──┬┬ ,EP=entry─point─name ┬──────────────────┬┬─┘

└─ IBM ─┘│ └ ,AMODE= ┬ 24 ───┬┘│

│ └ ANY ← ┘ │

└ ,NAME=program─name ──────────────────────┘

 Parameters

MODE=USER
Enables the exit routine to run in user mode. The routine can access only the
storage pages associated with it unless storage protection has been disabled at the
system or the program level.

Note: Storage protection is disabled at the system level by the NOPROTECT
parameter of the SYSTEM statement and disabled at the program level by
the NOPROTECT parameter of the PROGRAM statement.

NAME=
Identifies the name of the exit routine.

MODE=SYSTEM
Enables the exit routine to run in system mode. The routine can access all storage
pages in the region in which it executes.

CALL
Specifies the calling conventions with which the exit routine is called:

DC
The routine is called by means of a #CALL instruction, using DC/UCF
calling conventions.

IBM
The routine is called by means of a BALR instruction, using standard IBM
calling conventions.

�� Calling conventions for numbered user exits are described in 7.4.1, “Calling
conventions for numbered exits” on page 7-50.

EP=
Specifies the routine is called by the specified entry point.

AMODE=
Specifies the addressing mode for the exit routine. Valid options are:

24 — The exit routine executes in 24-bit addressing mode.

ANY (default) — The exit routine executes in the same addressing mode as does
the DC/UCF nucleus.

NAME=
Specifies the routine is loaded using the specified routine's name.

7-58 CA-IDMS System Operations

7.4 Numbered exits

#DEFXIT system calling methods

Considerations: The combination of #DEFXIT options that requires the least
system overhead is:

MODE=SYSTEM,CALL=DC,EP=entry-point-name

The #DEFXIT options that you use determine whether the user exit routine will be
executed in user mode or system mode. The table below lists considerations for exit
routines written for execution in user or system mode.

System-mode exit routines: When you use DC/UCF macros within a system-mode
exit routine, the RGSV parameter of the macro should be specified to ensure
that register contents are not destroyed during execution.

Calling method Considerations

Entry point (EP) The routine runs as part of the RHDCUXIT nucleus module.
Therefore, you must link edit the routine with the RHDCUXIT
module.

Running the program in RHDCUXIT eliminates the overhead
of using a program pool for the exit routine. This strategy is
generally advisable for frequently called exits.

Name The routine runs as a program under the DC/UCF nucleus.
Therefore, you must define the routine to the DC/UCF system
by using the system generation PROGRAM statement.

At run time, DC/UCF loads the exit routine into a program
pool, as necessary. This strategy is often advisable for
infrequently called exits.

Chapter 7. User Exits 7-59

7.4 Numbered exits

Execution mode Considerations

User The routine can access only the storage pages associated with
it unless storage protection has been disabled at the system or
the program level. The exit routine:

■ Runs as a program under the DC/UCF nucleus.

■ Uses standard IBM calling conventions (except that no
save area is passed in register 13). The exit is called by a
#LINK statement.

■ Cannot process register 15 return codes.

System The routine can access all storage pages in the region in which
it executes. The exit routine:

■ Uses either IBM or DC/UCF calling conventions:

■ IBM conventions — The routine is called by a BALR
instruction.

■ DC/UCF conventions — The routine is called by a
#CALL instruction.

■ Must contain a #MOPT macro with ENV=SYS specified.

■ Must save and restore any registers that are used by the
exit.

■ Any DC/UCF macros used must include a
RGSV=(R2-R8) clause and ensure that R9=A(current
TCE) and R10=A(CSA), when the macro is called; for
example #GETSTG TYPE=(USER),LEN=R0,
ADDR=(1),RGSV=(R2-R8)

■ Can process register 15 return codes.

7.4.4.2 Step 2: Assemble and link edit the RHDCUXIT module

To make numbered exits available for use, assemble and link edit the RHDCUXIT
module for the system. The RHDCUXIT module is loaded at system startup as part of
the nucleus.

When link editing the RHDCUXIT module:

■ Include in the link edit any exit routines for which the #DEFXIT macro specifies
an entry-point name

■ Specify that the RHDCUXIT module entry point is UXITEP1

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

7-60 CA-IDMS System Operations

7.4 Numbered exits

OS/390 RHDCUXIT assembly and link edit

//ASMUXIT EXEC PGM=ASMA9�,REGION=�M,

// PARM='OBJECT,NODECK,LIST,XREF(SHORT),RENT'

//SYSLIB DD DSN=idms.maclib,DISP=SHR

// DD DSN=sys1.maclib,DISP=SHR

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT2 DD DSN=&&SYSUT2,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSUT3 DD DSN=&&SYSUT3,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSPRINT DD SYSOUT=�

//SYSLIN DD DISP=SHR,DSN=your.exit.objlib(RHDCUXIT)

//SYSIN DD DSN=rhdcuxit.source,DISP=SHR

//�

//LNKUXIT EXEC PGM=HEWL,

// PARM=(XREF,MAP,LET,LIST,NCAL,RENT)

//SYSPRINT DD SYSOUT=�

//SYSUT1 DD DSN=&&SYSUT1,UNIT=VIO,SPACE=(17��,(6��,1��))

//SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//OBJLIB DD DISP=SHR,DSN=your.exit.objlib

//SYSLIN DD �

 INCLUDE OBJLIB(RHDCUXIT)

INCLUDE OBJLIB(exitnnep) optional: for #DEFXITs with EP=exitnnep

 ENTRY UXITEP1

 NAME RHDCUXIT(R)

VSE/ESA RHDCUXIT assembly and link edit

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE RHDCUXIT

// EXEC ASMA9�

rhdcuxit.source

/�

INCLUDE RHDCUXIT

include exitnnep optional: for #DEFXITs with EP=exitnnep

ENTRY UXITEP1

// EXEC LNKEDT

idms.loadlib data set name of the CA-IDMS load library

idms.maclib data set name of the CA-IDMS macro library

sys1.maclib data set name of the system macro library

rhdcuxit.source name of the RHDCUXIT source

your.exit.objlib data set name of the object library

Chapter 7. User Exits 7-61

7.4 Numbered exits

VM/ESA RHDCUXIT assembly and link edit

GLOBAL MACLIB idmslib

FILEDEF TEXT DISK RHDCUXIT TEXT A

ASSEMBLE rhdcuxit.source (NODECK OBJECT

FILEDEF SYSLST PRINTER

FILEDEF SYSLMOD DISK idmslib LOADLIB a2 (RECFM V LRECL 1�24 BLKSIZE 1�24

LKED linkctl

Linkage editor control statements (linkctl):

INCLUDE RHDCUXIT

include exitnnep optional: for #DEFXITs with EP=exitnnep

ENTRY UXITEP1

NAME RHDCUXIT(R)

BS2000/OSD RHDCUXIT assembly and link edit

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file ID associated with the file containing CA-IDMS
modules

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

rhdcuxit.source filename of the file containing the RHDCUXIT source

idmslib filename of the CA-IDMS MACLIB library

idmslib LOADLIB a2 file identifier of the CA-IDMS LOADLIB library

linkctl filename of the file containing the linkage editor control
statements

/CALL-PROC (LIB=idms.dba.srclib,ELEM=IDMSMOD),PROC-PAR=(RHDCUXIT)

idms.dba.srclib filename of the CA-IDMS DBA source library

7.4.5 System-invoked numbered exits

User exits 0 through 255 are reserved for system-invoked numbered exit routines. The
currently-implemented exits are listed below and described individually after the table.

7-62 CA-IDMS System Operations

7.4 Numbered exits

At run time, a system-invoked numbered exit routine is called by a system module if
the exit has been installed in the system by means of the #DEFXIT macro. For
details, see 7.4.4, “Installing numbered exits in the system” on page 7-56.

Exit Description of exit

Exit 0 System initialization exit

Exit 1 Signon exit

Exit 2 Signoff exit

Exit 4 New task exit

Exit 5 Task termination exit I (before statistics are written)

Exit 6 Task termination exit II (after statistics are written)

Exit 7 Write-to-log exit

Exit 8 Log full exit

Exit 9 System statistics exit

Exit 10 Reserved

Exit 11 Reserved

Exit 12 Terminal I/O error exit

Exit 13 Shutdown exit

Exit 14 BIND RUN UNIT and READY AREA exit

Exit 15 VIB statistics exit

Exit 16 Write printer exit

Exit 17 Input data stream exit

Exit 18 Output data stream exit

Exit 19 Asynchronous terminal connection exit

Exit 20 Resource limit exit

Exit 21 SYSOUTL report exit

Exit 22 Report security and routing exit

Exit 23 Pre-BIND RUN UNIT exit

Exit 24 GET TIME exit

Exit 26 OLQ JCL exit

Exit 27 ERE Extension Examiner exit

Exit 28 Security Preprocessing exit

Exit 29 Security Postprocessing exit

Chapter 7. User Exits 7-63

7.4 Numbered exits

Exit Description of exit

Exit 30 Victim selection for deadlock detection exit

Exit 31 Transaction statistics exit

Exit 32 SYSOUTL detail record

Exit 33 Program loader exit

Exit 34 Unqualified dbkey FIND/OBTAIN exit

Exit 35 Stalled task information exit

Exit 36 Global deadlock victim selection exit

Exit 37 Recovery wait exit

Exit 38 Quiesce area exit

7.4.5.1 Exit 0 — System Initialization Exit

Description: This exit is called by RHDCMSTR immediately after internal run units
are signed on and common work area (CWA) storage is initialized.

Sample uses: Exit 0 can be used to initialize the CWA with site-specific
information.

 Parameters: None.

 Return codes: None.

7.4.5.2 Exit 1 — Signon Exit

Description: Called after the signon routine (RHDCSNON) has verified the user
identifier and password and has built a signon element (SON).

Sample uses: Exit 1 can be used to display messages and to capture signon
information whenever a user signs on to the DC/UCF system.

Considerations: This user-exit routine must be written to execute in system mode.
Additionally, the #DEFXIT macro that defines the routine must specify
MODE=SYSTEM.

Parameters: One parameter is passed: the address of the SON.

Return codes: The following values can be returned in register 15:

■ A return code of greater than 4 directs the calling routine to abort the signon
request.

■ A return code of 4 or less directs the calling routine to accept the signon request.

7-64 CA-IDMS System Operations

7.4 Numbered exits

7.4.5.3 Exit 2 — Signoff Exit

Description: Called before the central security system signs off a user.

Sample uses: Exit 2 is useful for billing purposes and to capture signon
information when the user signs off.

Parameters: One parameter is passed: the address of the signon element (SON).

 Return codes: None.

7.4.5.4 Exit 4 — New Task Exit

Description: Called whenever a new task is first dispatched. The exit is called after
the task is initialized but before control is passed to a processing program.

Sample uses: This exit can be used to monitor task usage.

 Parameters: None.

 Return codes: None.

7.4.5.5 Exit 5 — Task Termination Exit I

Description: Called whenever a task terminates, before task statistics (if any) are
written. When the exit is called, the VB50 has been freed. Task statistics must be
obtained from the task statistics table.

Sample uses: This exit can be used to control the writing of task statistics.

Considerations: Accounting data of interest can be extracted from the #STLDS
DSECT and processed, as appropriate. For example, the accounting data can be
written to an output file in addition to being written to the DC/UCF log.

This user-exit routine must be written to execute in system mode. Additionally, the
#DEFXIT macro that defines the routine must specify MODE=SYSTEM.

 Parameters: None.

Return codes: A return code greater than 4 prevents the system from writing task
statistics to the log file.

Chapter 7. User Exits 7-65

7.4 Numbered exits

7.4.5.6 Exit 6 — Task Termination Exit II

Description: Called whenever a task terminates, after task statistics (if any) are
written.

 Parameters: None.

 Return codes: None.

7.4.5.7 Exit 7 — Write-to-Log Exit

Description: Called whenever a message line is retrieved from the message
dictionary by a #WTL (WRITE LOG) request.

This exit is called after the message is received and before it is sent to its destination.

Sample uses: Exit 7 can be used to modify the text of a message before the
message is sent to its destination.

Parameters: One parameter is passed: the address of the message (133 bytes),
starting with the ASA control character.

 Return codes: None.

7.4.5.8 Exit 8 — Log Full Exit

Description: Called whenever the DC/UCF log area or file becomes full.

Sample uses: This exit can be used to submit an ARCHIVE LOG utility statement
to the internal reader and offload the log area.

 Parameters: None.

 Return codes: None.

7.4.5.9 Exit 9 — System Statistics Exit

Description: Called whenever RHDCSTTS is invoked to write system statistics:

■ At DC/UCF shutdown

■ At the statistics interval

■ When a DCMT WRITE STATISTICS is issued

The exit is called before statistics are written.

Sample uses: This exit permits your site to monitor the writing of system statistics.

 Parameters: None.

7-66 CA-IDMS System Operations

7.4 Numbered exits

 Return codes: None.

7.4.5.10 Exit 12 — Terminal I/O Error Exit

Description: Called whenever a permanent terminal I/O error is returned to a task
by a line driver module.

Sample uses: Exit 12 can be used to vary a physical terminal offline after a
designated number of I/O errors.

 Parameters: None.

 Return codes: None.

7.4.5.11 Exit 13 — Shutdown Exit

Description: Called whenever a shutdown request is issued. The exit is called
before the system is terminated (that is, immediately before the database resource
control task (RHDCDBRC) terminates).

This exit is not called when an abort request is issued.

Sample uses: Exit 13 can be used to record the status of the system at shutdown
time.

 Parameters: None.

 Return codes: None.

7.4.5.12 Exit 14 — BIND RUN UNIT and READY AREA Exit

Description: Called whenever a BIND RUN UNIT or READY AREA is performed.
Exit 14 is invoked after exit 23.

Sample uses: Exit 14 can be used to perform security checking routines to
determine whether the user is authorized to access the requested database or area.

Considerations: This user-exit routine must be written to execute in system mode.
Additionally, the #DEFXIT macro that defines the routine must specify
MODE=SYSTEM.

Information required by the user-exit routine is available as follows:

■ For BIND requests, the address of the subschema name is contained in the
SSCPARM3 field in the IDMS communications block (#SSCDS).

■ For READY AREA requests, the address of the area name is contained in the
SSCAREA field in the IDMS communications block.

Chapter 7. User Exits 7-67

7.4 Numbered exits

■ For any request, user information is available from the signon element (#SONDS)
by issuing an ACCEPT USERID navigational DML statement (#ACCEPT
TYPE=USERID in Assembler).

■ For any request, security information is available from the signon element
(#SONDS) by invoking the #SECHECK macro.

�� For information about the #SECHECK macro, see CA-IDMS Security
Administration.

Parameters: Three parameters are passed:

■ A fullword, the value of which indicates the function to be performed:

 Value Function

36 READY USAGE - MODE UPDATE

37 READY USAGE - MODE RETRIEVAL

38 READY USAGE - MODE PROTECTED UPDATE

39 READY USAGE - MODE PROTECTED RETRIEVAL

4� READY USAGE - MODE EXCLUSIVE RETRIEVAL

41 READY USAGE - MODE EXCLUSIVE UPDATE

59 BIND RUN UNIT

97 No lock for transient isolation

■ The address of the IDMS communications block (#SSCDS).

■ The address of the DLIM control block, which contains the address of the external
request element (ERE) if the request is external. This address can be used to
access the batch accounting data in the ERE-SVC-EXTENSION if the SVC exit
has been implemented to provide such data.

Return codes: The following values can be returned in register 15:

■ A return code greater than 4 directs the calling routine to abort the BIND or
READY.

■ A return code of 4 or less directs the calling routine to continue processing the
BIND or READY.

To indicate that an error has occurred, the exit routine must both set the return code
(register 15) to greater than 4 and set an error code in the SSCSTAT field of the
IDMS communications block.

7.4.5.13 Exit 15 — VIB Statistics Exit

Description: Called whenever system statistics and/or task statistics (if requested at
system generation time) are written to the variable information block (VIB). This exit
is called after the statistics are written but before the VIB is released.

Sample uses: This exit can be used to examine collected statistics.

Parameters: Two parameters are passed:

■ A fullword value:

– 0 — Task statistics are not being collected.

7-68 CA-IDMS System Operations

7.4 Numbered exits

– 1 — Task statistics are being collected.

■ The address of the VIB

 Return codes: None.

7.4.5.14 Exit 16 — Write Printer Exit

Description: Called by the #PRINT (WRITE PRINTER) request handler at the first
print request for a report.

Sample uses: Exit 16 can be used to examine and/or modify the report request
block (RRB).

Considerations: This user exit routine must be written to execute in system mode.
Additionally, the #DEFXIT macro that defines the routine must specify
MODE=SYSTEM.

Parameters: One parameter is passed: The address of the RBB associated with the
requesting task.

 Return codes: None.

7.4.5.15 Exit 17 — Input Data Stream Exit

Description: Called by the I/O request handler after the check for a read has been
posted, the completion code has been checked, and line editing has been performed.

Sample uses: Exit 17 can be used to examine and/or alter the contents of the input
data stream.

Considerations: If you need to increase the size of the data stream, create a new
input buffer. To acquire storage for building buffers, use the get-buffer routine whose
address is passed in the fourth word in the parameter list.

Invoke the get-buffer routine by using the following instruction:

BALR R14,R15

In this BALR instruction, register 15 contains the address of the get-buffer routine.
Register 1 contains the address of the parameter list.

All registers are preserved by the get-buffer routine. The #IBHDS DSECT provides a
map of the buffer header. The id of the task's physical terminal (PTERM) can be
found in the PTEID field of the physical terminal element (PTE). The PTE layout is
given by the #PTEDS DSECT.

An exit routine that creates new buffers can be:

■ Written to execute in system mode. In this case, the #DEFXIT macro that adds
the routine to the system must specify MODE=SYSTEM.

Chapter 7. User Exits 7-69

7.4 Numbered exits

■ Written to execute in user mode. The user exit routine must run with storage
protection disabled. The #DEFXIT macro that adds the routine to the system must
specify MODE=USER and must call the routine by name.

If you create a new input buffer, make sure that the exit 17 routine does not free the
old buffer. Make sure that the exit 17 routine returns values as follows:

■ The first parameter must return the address of the first input buffer.

■ The second parameter must return the total length of the input datastream.

Parameters: The parameter lists for the exit routine and for the get-buffer routine
are each given below.

The exit 17 routine receives and can return changed values by means of the following
five-fullword parameter list:

■ The address of the first input buffer. If no buffer exists, the address is zeros.

■ The total length of the input data stream. This includes all buffers.

■ The address of the task's physical terminal element (PTE).

■ The address of a get-buffer routine.

■ A fullword in which the first byte contains:

– X'80' — End of parameter list.

– X'40' — The buffer contains the SNA functional management header (for
lines defined with TYPE=VTAMLU).

– X'20' — The physical terminal expects a 3270-type data stream (for lines
defined with TYPE=VTAMLU).

The get-buffer routine receives and returns the following fifteen-fullword parameter list
that you must build:

■ The address of the buffer on return

■ The length of buffer needed

■ The address of the task's physical terminal element (PTE)

■ A twelve-fullword work area

 Return codes: None.

7.4.5.16 Exit 18 — Output Data Stream Exit

Description: Called by the I/O request handler before the line driver is posted to
perform an output operation. The exit is invoked after compaction is performed (if
applicable).

Sample uses: Exit 18 can be used to examine and/or alter the contents of the
output data stream.

7-70 CA-IDMS System Operations

7.4 Numbered exits

Considerations: If the exit routine alters the contents of the data stream, you must
return the length of the altered data stream in the second parameter.

You can build buffers by using the get-buffer routine whose address is passed in the
fourth word in the parameter list. All registers are preserved by the get-buffer routine.

Invoke the get-buffer routine by using the following instruction:

BALR R14,R15

In this BALR instruction, register 15 contains the address of the get-buffer routine.
Register 1 contains the address of the parameter list.

The id of the task's physical terminal (PTERM) can be found in the PTEID field of the
physical terminal element (PTE). The PTE layout is given by the #PTEDS DSECT.

An exit routine that builds buffers can be:

■ Written to execute in system mode. In this case, the #DEFXIT macro that adds
the routine to the system must specify MODE=SYSTEM.

■ Written to execute in user mode. The program must run with storage protection
disabled. The #DEFXIT macro that adds the routine to the system must specify
MODE=USER and call the routine by name.

If you create a new input buffer, make sure that the exit 18 routine returns values as
follows:

■ The first parameter must return the address of the first buffer.

■ The second parameter must return the total length of the output data stream.

Parameters: The parameter lists for the exit routine and for the get-buffer routine
are each given below.

The exit 18 routine receives and can return changed values by means of the
five-fullword parameter list:

■ The address of the output buffer. This parameter contains zeros if no buffer
exists.

■ The length of the output data stream.

■ The address of the task's physical terminal element (PTE).

■ The address of a get-buffer routine.

■ A fullword in which the first byte contains:

– X'80' — End of parameter list.

– X'40' — The buffer contains the SNA functional management header (for
lines defined with TYPE=VTAMLU).

– X'20' — The task's physical terminal (PTERM) expects a 3270-type data
stream (for lines defined with TYPE=VTAMLU).

Chapter 7. User Exits 7-71

7.4 Numbered exits

If the buffer contains converted data that originally was in 3270-type format,
make sure the fifth parameter does not return X'20'. (X'20' causes 3270
WRITE commands to be prefixed to the buffer.)

The get-buffer routine receives and returns the following fifteen-fullword parameter list
that you must build:

■ The address of the buffer on return.

■ The length of buffer needed.

■ The address of the task's physical terminal element (PTE). This value is required.

■ A twelve-fullword work area.

 Return codes: None.

7.4.5.17 Exit 19 — Asynchronous Terminal Connection Exit

Description: Called by the asynchronous (TTY and 2741) terminal drivers. This
exit is called after the line driver has validated the terminal type code and has copied
the 1-to-8-character identifier into the PTE6NAME field of the physical terminal
element (PTE).

Sample uses: Exit 19 can be used to examine and/or alter the contents of the PTE
and its device-dependent extension (for example, the exit can treat the character string
in the PTE6NAME field as a system password).

Considerations: This user-exit routine must be written to execute in system mode.
Additionally, the #DEFXIT macro that defines the routine must specify
MODE=SYSTEM.

Parameters: One parameter is passed: the address of the physical terminal element
(PTE).

Return codes: The following values can be returned in register 15:

■ A return code greater than 0 directs DC/UCF to continue the normal connection
process.

■ A return code less than 0 directs DC/UCF to disconnect the terminal and to
re-enable the line for connection.

■ A return code of 0 indicates that register 1 points to an EBCDIC message and
register 0 contains the message length.

After truncating the message (if longer than 100 bytes) and translating it into the
appropriate transmission code, DC/UCF writes the message to the terminal and
waits for the user to reenter a terminal identifier.

7-72 CA-IDMS System Operations

7.4 Numbered exits

7.4.5.18 Exit 20 — Resource Limit Exit

Description: Called by RHDCLIMT whenever a resource limit is exceeded by a
task. The exit routine is invoked before the request that exceeds the limit is satisfied.

Sample uses: This exit can be used to examine other limits or to increase the limit
that has been exceeded.

Exit 20 permits the user to continue or abend a task based on the type of task. For
example, you may choose to continue a payroll task that has exceeded the storage limit
while abending any other task that exceeds the same limit.

Considerations: DC/UCF enforces limits on task resource usage as described
below:

■ When a task is initiated at run time, the system constructs a resource limit block
(RLB) for the task. The RLB specifies the specified limit for each resource type.
Additionally, the RLB points to an extension in which the system maintains a
count of the number of times each limit has been exceeded.

■ When the task issues a request involving a resource for which a limit has been
established, the system checks the current value for the resource in the task
statistics table (TST) for the task.

■ When the resource request would exceed the limit specified in the RLB, (the value
in the TST would exceed the limit in the RLB):

– If exit 20 is defined, the system either continues or abends the task, as
directed by the exit routine. Exit 20 can be used to perform various
functions, such as examining other limits, writing messages to the system log,
and altering the limits in the RLB for the task.

– If exit 20 is not defined, the system abends the task.

DC/UCF continues to check limits when the task resumes execution. Therefore, if the
task is to continue, the exit routine must alter the limit in the resource limit block
(RLB).

Parameters: Two parameters are passed:

■ A fullword, the last byte of which indicates the resource that caused the exit to be
invoked, as follows:

Value Resource

 X'�1' Storage

 X'�8' Database I/O operations

 X'1�' Database key locks

 X'2�' System service calls

■ The offset from the beginning of the resource limit block (RLB) of the limit that
has been exceeded.

Chapter 7. User Exits 7-73

7.4 Numbered exits

The address of the RLB is provided by the TCERLBA field of the task control
element (TCE). The RLBEA field of the RLB points to an extension in which the
system maintains a count of the number of times each limit has been exceeded.

Return codes: The following values can be returned in register 15:

■ 0 directs the calling routine to continue the task without issuing any messages.

■ 4 directs the calling routine to abort the task after issuing message DC244003.

■ 8 directs the calling routine to continue the task after issuing message DC244002.

Examples: The sample user exit shown below is called by RHDCLIMT whenever a
resource limit is exceeded. The exit is invoked by modifying RHDCUXIT for exit 20
in either of the following ways:

#DEFXIT MODE=SYSTEM,CALL=DC,EP=UX2�EP1 EXIT 2�

#DEFXIT MODE=SYSTEM,CALL=DC,NAME=RHDCUX2� EXIT 2�

7-74 CA-IDMS System Operations

7.4 Numbered exits

Sample user exit 20 — Resource Limit Exit

 ���

 � �

 � THIS SAMPLE USER EXIT 2� HANDLES RESOURCE LIMIT OVERFLOWS. �

 � IT IS INVOKED BY RHDCLIMT WHENEVER A LIMIT IS FOUND TO BE �

 � EXCEEDED. THE CONDITIONS HANDLED ARE AS FOLLOWS: �

 � �

 � STORAGE LIMITS: ALL TASKS ARE ALLOWED TO CONTINUE �

 � LOCK LIMITS: ALL TASKS ARE ABENDED �

 � CALL LIMITS: EXTERNAL REQUEST UNITS (ERUS) ARE ABENDED �

 � DBIO LIMITS: ALL TASKS ARE ABENDED �

 � �

 ���

 UX2� TITLE 'RHDCUX2� — EXAMPLE RESOURCE LIMIT EXIT'

 � RHDCUX2� EP=UX2�EP1

 EJECT

 #MOPT CSECT=RHDCUX2�,ENV=SYS

 COPY #CSADS

 COPY #LTEDS

 COPY #RLBDS

 COPY #TCEDS

 COPY #TSTDS

 ���

 � �

 � WORK AREA DSECT FOR LIMT ROUTINE. �

 � �

 ���

 WORKD DSECT

 SYSPLIST DS 12A

WORKDL EQU (�-WORKD+3)/4 LENGTH IN WORDS.

 SPACE

 XIT DSECT

XIT�� DS H FILLER

 XITCD DS �H RESOURCE CODE

DS X (RESERVED AT THE MOMENT)

 XITSTG #FLAG X'�1' CHECK STORAGE LIMIT

 XITDBIO #FLAG X'�8' CHECK DBIO LIMIT

 XITLOCK #FLAG X'1�' CHECK DB LOCKING LIMIT

 XITCALL #FLAG X'2�' CHECK SERVICE CALL LIMIT

 XITFLG1 DS X

XITOF DS F LIMIT OFFSET IN TASK RLB

 EJECT

Chapter 7. User Exits 7-75

7.4 Numbered exits

 ���

 � �

 � RHDCUX2� - USER EXIT TO HANDLE RESOURCE LIMITS �

 � �

 � ON ENTRY R1 WILL POINT TO A TWO WORD PLIST, FORMATTED �

 � AS FOLLOWS: �

 � �

 � +� FULLWORD: EXIT # (2� IN THIS CASE) �

 � +4 ADDRESS: PTR TO PLIST CREATED BY MODULE �

 � THAT INVOKED THE EXIT �

 � �

 ���

 RHDCUX2� CSECT

 USING CSA,R1�

 USING TCE,R9

 UX2�EP1 #START

 SPACE

 �

 � LOCATE PARAMETERS IN PLIST

 �

 SPACE

LR R2,R1 SAVE PARM REGISTER

#GETSTK =WORKDL,CLEAR=YES GET SOME WORK SPACE

 USING WORKD,R11

L R3,4(R2) GET AT PARMS PASSED BY LIMTEP1

 SPACE

 �

 � ACTUAL PROCESSING BEGINS HERE

 �

 SPACE

USING XIT,R3 BASE THE PLIST AREA

#TEST XITSTG,OFF=XIT�1� ? STORAGE LIMIT EXCEEDED

 SR R15,R15 YES - IGNORE

 B XIT�99 AND EXIT

 XIT�1� #TEST XITCALL,OFF=XIT�8� ? SERVICE CALL LIMIT EXCEEDED

#TEST TCEERUS,OFF=XIT�15 YES - IS THIS AN EXTERNAL RU

LA R15,4 YES - ABEND THE TASK

 B XIT�99

XIT�15 DS �H NO - ALLOW IT TO CONTINUE

SR R15,R15 CLEAR REGISTER -

 B XIT�99

 XIT�8� DS �H ABEND ALL OTHER LIMIT OVERFLOWS

 LA R15,4

 B XIT�99

 XIT�99 DS �H

 #RTN

 DROP R11,R1�,R9,R3

 END

7.4.5.19 Exit 21 — SYSOUTL Report Termination Exit

Description: Exit 21 is called by the SYSOUTL line driver (RHDCD07Q) after the
last line of each print report has been written to the spool file.

A sample exit routine for exit 21 on VM/ESA systems is provided on the integration
tape used to install CA-IDMS.

�� For details on implementing the sample routine at VM/ESA sites, see CA-IDMS
Installation and Maintenance Guide - VM/ESA.

7-76 CA-IDMS System Operations

7.4 Numbered exits

Sample uses: A DC system can include one or more lines for spooled output.
Such lines are defined at system generation time with a type of SYSOUTL. Reports
sent to the spool file for a SYSOUTL line are not printed until the file is closed. The
spool file is closed:

■ When the SYSOUTL line driver is disabled, for example, at DC system shutdown

■ When a CP command to close the file is issued from the DC operator's console

At VM/ESA installations, exit 21 can be used to print spooled output on completion of
each report. If appropriate, the exit routine can reroute the spool file (for example,
through RSCS) before closing the file. A sample user-exit routine for exit 21 can be
found in CA-IDMS Installation and Maintenance Guide - VM/ESA.

Considerations: At a VM/ESA site with guest operating systems, define the
SYSOUTL line by:

1. Making a direct unit assignment in the guest operating system

2. Using a FILEDEF in VM/ESA to associate that unit with a VM/ESA print device

If the SEND command sends messages to the SYSOUT printer, the report element for
each message will have a report name (RPERPTNM) of binary zeros. The exit routine
can then:

1. Determine the appropriate RSCS destination for the report

2. Issue the TAG, SPOOL CLOSE, and SPOOL OPEN commands to provide
support for VM/RSCS operations

This user-exit routine must be written to execute in system mode. Additionally, the
#DEFXIT macro that adds the exit routine to the system must specify
MODE=SYSTEM.

Parameters: One parameter is passed: the address of the physical terminal element
(PTE) associated with the SYSOUTL line. The PTE points to the logical terminal
element (LTE), which points to the report element (RPE). The RPE contains such
information as the report identifier and the number of copies to be printed.

 Return codes: None.

7.4.5.20 Exit 22 — Report Security and Routing Exit

Description: This exit can be used to store user-related information to be used at
print time. Print module RHDCPRNT calls exit 22 when the user makes an initial
print request, after RHDCPRNT has assigned a unique report identifier to the print
request.

Sample uses: During this exit's processing, you can write a queue record that
contains security or routing information. You can modify the RHDCBANR routine so
that, at print time, it extracts the saved information and uses it to write the report
header. This header can contain the appropriate security or routing information.

Chapter 7. User Exits 7-77

7.4 Numbered exits

Considerations: This exit routine must be written to execute in system mode.
Additionally, the #DEFXIT macro that adds the exit to the system must specify
MODE=SYSTEM.

Parameters: The following parameters are passed:

■ The address of the report print element (RPE)

■ The address of the report request block (RRB)

 Return codes: None.

7.4.5.21 Exit 23 — Pre-BIND RUN UNIT Exit

Description: User exit 23 is called before a BIND RUN UNIT is performed. Exit
23 is invoked before exit 14. Exit 23 has addressability to the task control element
(TCE).

Sample uses: User exit 23 can be used to override any specifications passed in the
parameter list, as specified below.

For example, exit 23 can be used to determine the node on which a database resides
and the database name based on the subschema name. If a database changes location,
you need not recompile the program with the new node or database name on the
BIND. The exit can change these parameters instead.

Considerations: This exit routine must be written to execute in system mode.
Additionally, the #DEFXIT macro that adds the exit to the system must specify
MODE=SYSTEM.

Parameters: Register 1 points to two fullwords that contain the exit number and the
address of a 40-byte data area that holds the values coded in the BIND RUN UNIT
request. If the user has set any database or dictionary overrides (such as by using
DCUF SET DICTNAME), the overrides are reflected in the data area. The format of
the data area is:

■ Subschema name (8 bytes)

■ Database node (8 bytes)

■ Database name (8 bytes)

■ Dictionary node (8 bytes)

■ Dictionary name (8 bytes)

The address of the task control element (TCE) is passed through register 9.

The exit can change these values. These changes are then reflected in the IDMS
communications block.

 Return codes: None.

7-78 CA-IDMS System Operations

7.4 Numbered exits

7.4.5.22 Exit 24 — GET TIME Exit

Description: Exit 24 provides a means to return a different value for GET TIME
requests than the current value returned by the operating system.

Exit 24 is called whenever a DC GETIME is issued to obtain the time and date from
the operating system.

Parameters: To use this feature, you must write a user exit routine with the
following attributes:

 ■ System mode

■ No storage protect

 ■ Amode 31

On entry to the exit:

■ R1 = Address of two (2) word parm list

■ +0 = Address of fullword containing exit number

■ +4 = Address of a doubleword date and time

The doubleword date and time contains the packed date, and the binary absolute time
in 0000 seconds. This is identical to the values normally found in CSATIME and
CSADATE fields. The date is expressed as 0nYYDDDF (for 1900 n is 0; for 2000 n
is 1).

To set a different time to be returned, simply store a date and time in the doubleword
pointed at by R1.

Return Codes: Return codes are ignored.

7.4.5.23 Exit 26 — OLQ JCL exit

Description: User Exit 26 is called when OLQ has built the JCL line.

Sample uses: Exit 26 can be used to alter the JCL and/or to output it.

 Considerations: None.

Parameters: A single parameter is passed to exit 26. It contains the address of the
JCL record.

Return codes: The following return codes can be returned in register 15:

■ A return code of 0 indicates that the exit output the record itself. OLQ itself will
continue with the next record if any.

■ A return code of 4 indicates that the exit examined and maybe altered the JCL
record, but wants OLQ to output it.

Chapter 7. User Exits 7-79

7.4 Numbered exits

■ Any other return code directs OLQ to abort.

7.4.5.24 Exit 27 — Examining the ERE Extension Exit

Description: User Exit 27 is called after DC/UCF receives a new external request
for services, but before the system performs any processing for the request. For
example, the exit is called before DC/UCF processes:

■ A request for database services from a batch program

■ A request to initiate a new UCF session

■ A request for services from another node in the DC/UCF communications network
provided that the connection is an SVC connection.

Sample uses: You can examine information in the ERE or in the ERE extension.
You can also specify the user id which will be used to sign on to the DC/UCF system.

Considerations: The following considerations apply to user exit 27:

■ In the #DEFXIT macro, user exit 27 must be defined using MODE=SYSTEM.

■ Exit 27 is invoked before exits 14 and 23.

■ When you return from Exit 27, register 1 should point to a field containing an
18-character user identifier, right-padded with blanks. Otherwise, default user
identifier PUBLIC may be substituted when ERUS signon takes place.

Parameters: A single parameter is passed to exit 27. It contains the address of the
ERE.

Return codes: The following return codes can be returned in register 15:

■ A return code of 0 if register 1 points to a valid user identifier.

■ A return code of 4 if register 1 does not point to a valid user id.

 Example:

7-80 CA-IDMS System Operations

7.4 Numbered exits

 ...

L R2,4(,R1) Get address of ERE

 USING ERE,R2

L R3,EREESEA Get address of ESE

 USING ESE,R3

L R4,ESESOXOF Get offset to ERE extension.

LA R4,ERE(R4) Get address of ERE extension.

 USING EREXDS,R4

 ...

� Test for user id modification criteria:

CLI EXEXUSER,C' ' User id blank or hex zero?

 BH NOSET No.

� Other user id modification criteria:

 ...

� We have determined that this exit is to specify the signon

� user id.

LA R1,DEFAULTU Set R1 for caller.

XR R15,R15 Clear R15 return code.

 B RETURN

NOSET DS �H

LA R15,4 Tell caller no id modification.

RETURN DS �H

 #RTN

DEFAULTU DC CL18'SITEUSERID'

 ...

 #RTN

 COPY #EREDS

 COPY #ESEDS

 COPY #UCFDS

7.4.5.25 Exit 28 — Security Preprocessing Exit

Purpose: Exit 28 allows you to examine all security requests, including user signon
and signoff, before the request is processed by the CA-IDMS centralized security
facility.

Description: Exit 28 is called after the security system has validated the function
code, but before it performs any other processing for the security request. When you
set a flag (SRBXFAB) in the Security Request Block (SRB), the exit can request that
access be denied.

�� For more information about the Security Request Block (#SECRB DSECT), see
CA-IDMS Security Administration.

Sample uses: You can examine the information in the SRB before CA-IDMS
processes the security request. For example, you might alter the required authorities
based on site specific requirements.

Considerations: Exit 28 cannot force the centralized security facility to allow the
requested access. If the exit does not abort the request by setting SRBXFAB, the
centralized security facility will process the request normally.

This exit routine must be written to execute in SYSTEM MODE. The #DEFXIT
macro that adds the exit routine to the system must:

 ■ Specify MODE=SYSTEM

Chapter 7. User Exits 7-81

7.4 Numbered exits

■ Call the routine using either DC or IBM calling conventions

■ Call the routine by entry point

Parameters: Two parameters are passed:

■ The address of the SRB

■ The length of the SRB

 Return codes: None.

7.4.5.26 Exit 29 — Security Postprocessing Exit

Purpose: Exit 29 allows you to examine all security requests, including user signon
and signoff, after the request is processed by the CA-IDMS centralized security
facility.

Description: Exit 29 is called after the centralized security facility has completed
processing for a security request. When you set a flag (SRBXFAB) in the security
request block (SRB), the exit can request that access be denied.

Sample uses: You can use exit 29 to log security violations or to implement site
specific security enforcement requirements.

 Considerations

■ Exit 29 cannot override a security violation.

■ If your site uses a security package external to DC/UCF (for example, CA-ACF2),
DC/UCF calls Exit 29 after signon to the external security package and again after
signon to DC/UCF. External signon occurs if any resource, including signon
itself, is externally secured. DC/UCF always attempts an internal signon.

Because DC/UCF calls the exit two times, you can customize internal signon to
use information from the external signon. For example, CA-ACF2 users may
want to move a Release 10.2 bit map from the ACF2 logon ID (LID) record to the
SONSECTY field in the signon control block.

DC/UCF uses the contents of the SONSECTY field as the default activity bit map
for the user. To do this, set the SRBXSGN flag in the SIGNON function of the
security request block (SRB).

If signon is secured internally, then you must:

– Define the user in the USER catalog

– Turn off the SRBXSGN flag in the SIGNON function of the security request
block (SRB).

■ This exit routine must be written to execute in SYSTEM MODE. The #DEFXIT
macro that adds the exit routine to the system must:

 – Specify MODE=SYSTEM

– Call the routine using either DC or IBM calling conventions

7-82 CA-IDMS System Operations

7.4 Numbered exits

– Call the routine by entry point

�� For information about the signon control block (#SONDS DSECT), see CA-IDMS
DSECT Reference Guide.

For information about the security request block (#SECRB DSECT), see CA-IDMS
Security Administration.

Parameters: Two parameters are passed:

■ The address of the SRB

■ The length of the SRB

 Return codes: None.

7.4.5.27 Exit 30 — Deadlock Victim Selection Exit

Description: User exit 30 lets users implement a site-specific deadlock victim
selection algorithm. User exit 30 is called after the deadlock detector has scanned all
tasks in the system that are waiting and has eliminated those that cannot be involved in
a deadlock situation.

After identifying waiting tasks that are involved in a deadlock, the deadlock detector
processes these tasks in pairs. A victim is chosen from the initial pair of tasks and
then compared to the next task involved in the deadlock. This process of examining
each task in the deadlock and selecting a new victim continues until all deadlocked
tasks have been examined. The last victim chosen is then terminated and the process
is repeated until no more deadlocks exist.

If exit 30 is not installed, the deadlock detector chooses the victim from each pair of
tasks examined as follows:

■ If one of the tasks is COND=NONE and the other task is COND=DEAD, the
COND=DEAD task will be selected as the victim.

■ If both tasks have the same COND specification, the task having the lower priority
will be chosen.

Sample uses: User exit 30 lets users bypass the default victim selection logic and
gain more control over how deadlocks are resolved. For example, some users may
prefer that victims be selected:

■ As external request units when deadlocks between online and external request
units are detected.

■ Based on what an application does rather than by its task priority.

You can apply exit 30 to a subset of applications or databases, by using return codes
(described below). This feature allows the exit to selectively apply its logic to pairs of
deadlocked tasks based on criteria determined by the implementer.

Chapter 7. User Exits 7-83

7.4 Numbered exits

Considerations: Exit 30 is passed the address of the Dispatch Control Elements
(DCE) representing the two tasks from which to choose a victim. The DCE is used by
the system to control how tasks are dispatched and contains the task dispatching
priority and the address of the Task Control Element (TCE).

As with all user exits, minimize the exposure of this exit to system control blocks
since these control blocks can change from release to release.

This exit routine must be written to execute in system mode. Additionally, the
#DEFXIT macro that adds the exit to the system must specify:

 ■ MODE=SYSTEM

 ■ AMODE=ANY

Additionally, this exit should be reentrant and should be coded to handle 24-bit and
31-bit addresses.

Parameters: Exit 30 is passed the address of a two fullword parameter list
consisting of the:

■ DCE address of the first deadlocked task

■ DCE address of the second deadlocked task

Return codes: Before it terminates, exit 30 should put the DCE address of the
selected victim in register 15. If you want the exit to use the default victim selection
logic in the deadlock detector, rather than a site-specific logic:

■ Return a value of 0 in register 15 to use the default victim selection logic and
continue to call exit 30.

■ Return a value of 4 in register 15 to use the default victim selection logic and
discontinue call to exit 30.

7.4.5.28 Exit 31 — Transaction Statistics Exit

Description: Called by the Transaction Manager whenever statistics are written
from the transaction block. This exit is called after statistics have been written but
before the transaction block has been released. Note that these transaction statistics
are not those maintained by the system and are not those maintained as the result of
the BIND, ACCEPT, or END TRANSACTION STATISTICS DML verbs.

Sample uses: This exit can be used to examine collected statistics.

Parameters: Two parameters are passed:

■ A fullword value:

– - 0 indicates task statistics are not being collected

– - 1 indicates task statistics are being collected

■ The address of the transaction block (TBK)

7-84 CA-IDMS System Operations

7.4 Numbered exits

 Return codes: None.

7.4.5.29 Exit 32 — SYSOUTL Detail Record Exit

Description: Called by the SYSOUTL line driver (RHDCD07Q) when a record is
about to PUT to the output file.

Sample uses: This exit can be used to:

■ Examine and modify every record

■ Insert records using the available DCB address

Considerations: This user exit routine must be written to execute in SYSTEM
mode. Additionally, the #DEFXIT macro that adds the exit routine to the system must
specify MODE=SYSTEM.

Parameters: Two parameters are passed:

■ The output record address

■ The DCB address

 Return codes: None.

7.4.5.30 Exit 33 — Program Loader Exit

Description: Called after a program load request has been completed.

Sample use: This exit can be used to extract program name and type to use for
statistics.

Considerations: This exit routine must be written to execute in SYSTEM mode.
The #DEFXIT macro that adds the exit routine to the system must:

 ■ Specify MODE=SYSTEM

■ Call the routine using either DC or IBM calling conventions

■ Call the routine by entry point

Parameters: Four parameters are passed:

■ Fullword 1 — Sets a type code of 1 to indicate a PDE

■ Fullword 2 — Address of the PDE for the program loaded

■ Fullword 3 — Unused

■ Fullword 4 — Unused

Chapter 7. User Exits 7-85

7.4 Numbered exits

7.4.5.31 Exit 34 — Unqualified Dbkey FIND/OBTAIN Exit

Description: Exit 34 helps identify and correct applications that may require
modification to function correctly when the Mixed Page Group BINDS ALLOWED
feature is enabled.

Exit 34 is invoked by IDMSDBMS whenever a rununit is enabled for mixed page
group processing and a FIND DB-KEY or OBTAIN DB-KEY verb with no record
name is issued. The exit is not invoked for rununits accessing the dictionary or
catalog.

Exit 34 is provided to allow the runtime detection of unqualified dbkey retrievals when
"Mixed Page Group Binds Allowed" is specified for the DBNAME. The exit may be
used to display messages on the console and/or abend the task. Furthermore, this exit
can provide the correct page group and radix value for the passed dbkey to enable the
application to run correctly without requiring source changes.

It is possible that an unqualified FIND DB-KEY or OBTAIN DB-KEY command may
not retrieve the desired record when Mixed Page Group Binds are allowed. When this
feature is enabled, IDMSDBMS will use the current page and radix value for the
dbkey. If the last DML operation referenced a page group other than the one desired,
then the wrong record may be retrieved. If the unqualified retrieval is the first DML
operation for the rununit, then there is no current of page group and a 0326 status code
is returned.

For the long term, Computer Associates recommends that applications with unqualified
FIND DB-KEY or OBTAIN DB-KEY commands be enhanced to specify a record
name or exploit the PAGE-INFO parameter rather than use this exit.

Considerations: You must write the Exit 34 routine to execute in SYSTEM mode.
The #DEFXIT macro that adds the exit routine to a system must:

 ■ Specify MODE=SYSTEM

■ Call the routine using either DC or IBM calling conventions

■ Call the routine by entry point

Parameters: Four parameters are passed:

■ Fullword 1 — Address of a five-word save area. The area will remain consistent
for the life of the rununit. Data stored here will remain until the rununit finishes.

■ Fullword 2 — Address of the IB50 Control Block. (See macro #FIBDS.)

■ Fullword 3 — Address of the Subschema Control Block. (See copy book
#SSC120.)

Fields: SSCPGRUP and SSCRADIX will contain the current page group and
radix value for the rununit (these may be changed). Upon return from the exit
IDMSDBMS will make the changed values current for the rununit.

7-86 CA-IDMS System Operations

7.4 Numbered exits

Note: Sample exit RHDCUX34 has been supplied as part of CA-IDMS. This
program will display a message on the console when called. It also contains examples
of abending a task and of modifying the current page group. To use the sample exit
as written, RHDCUXIT must define a #DEFEXIT as follows:

#DEFXIT MODE=SYSTEM,CALL=DC,EP=UX34EP1

and RHDCUX34 must be linked with RHDCUXIT.

Return Codes: Return codes are ignored.

7.4.5.32 Exit 35 — Stalled Task Information Exit

Description: This exit is called to gather information about a stalled task for use
during deadlock victim selection. It will be invoked only in a data sharing
environment during global deadlock management.

This exit can be used to pass information to user exit 36 to assist in selecting a victim
task in a global deadlock situation.

Considerations: This exit is passed the addresses of two control blocks. The first
control block contains information about the stalled task, the second is an output area
in which the exit can place information for use by exit 36 when selecting a deadlock
victim. The address of the stalled task's Dispatch Control Element (DCE) is passed in
the first control block. This can be used to locate other task-related control blocks.

Addresses should not be stored in the 32-byte output area, since exit 36 may execute
on a different system from that on which exit 35 is executing.

This exit must be written to execute in SYSTEM mode. The #DEFXIT macro that
adds the exit routine to the system must specify:

 ■ MODE=SYSTEM

 ■ AMODE=ANY

Additionally, this exit should be reentrant and should be coded to handle 31-bit
addresses.

Parameters: Two parameters are passed:

■ Fullword 1 - The address of an area described by DSECT #X35PL

■ Fullword 2 - The address of a 32-byte output area in which the exit may save
information to be passed to User Exit 36

Return Codes: Set register 15 to 0.

Chapter 7. User Exits 7-87

7.4 Numbered exits

7.4.5.33 Exit 36 - Global Deadlock Victim Selection Exit

Description: This exit is called in a global deadlock situation to select a task to be
cancelled. If exit 36 is not installed, a global deadlock will be resolved by choosing
the task with the lowest priority that was initiated last. When comparing two tasks,
CA-IDMS will always select as a victim a task that specified COND=DEAD over one
that specified COND=NONE.

Exit 36 allows site-control over which task is chosen as a victim in a global deadlock
situation.

Considerations: This exit is passed the addresses of two sets of control blocks,
each of which is associated with a stalled task. Within each set, the first control block
contains information supplied by CA-IDMS about the stalled task, the second is an
area that potentially contains information passed from exit 35.

Exit 36 must be written to execute in SYSTEM mode. The #DEFXIT macro that adds
the exit routine to the system must specify:

 ■ MODE=SYSTEM

 ■ AMODE=ANY

Additionally, this exit should be reentrant and should be coded to handle 31-bit
addresses.

Parameters: Four parameters are passed:

■ Fullword 1 - The address of a control block described by DSECT #X36PL that
describes the first of two deadlocked tasks.

■ Fullword 2 - The address of a 32-byte area containing information passed from
user exit 35 for the first deadlocked task.

■ Fullword 3 - The address of a control block described by DSECT #X36PL that
describes the second of two deadlocked tasks.

■ Fullword 4 - The address of a 32-byte area containing information passed from
user exit 35 for the second deadlocked task.

Return Codes: Set register 15 to the address of the control block described by
DSECT #X36PL for the task that is to be selected as the victim. If the exit does not
select a victim, it should set the return code to 0.

7.4.5.34 Exit 37 - Recovery Wait Exit

Description: This exit is called when a task is about to wait on a global resource
that requires recovery by a failed member of a data sharing group.

This exit can override the current recovery wait setting for the system.

7-88 CA-IDMS System Operations

7.4 Numbered exits

Considerations: The exit can specify whether the task should be aborted or
whether it should wait for the failing member to be recovered. If the task should wait,
the exit specifies the length of time the task should wait.

This exit must be written to execute in SYSTEM mode. The #DEFXIT macro that
adds the exit routine to the system must specify:

 ■ MODE=SYSTEM

 ■ AMODE=ANY

Additionally, this exit should be reentrant and should be coded to handle 31-bit
addresses.

Parameters: One parameter is passed:

Fullword 1 - The address of an area described by DSECT #X37PL

Return Codes: By setting an appropriate return code in Register 15, the exit can
specify what action CA-IDMS should take with regard to the task . The possible
choices are:

■ 0 - the task should wait. Register 0 must contain the amount of time that the task
is permitted to wait. Valid values for register 0 are:

– 1 through 32767 specifying the number of seconds that the task is permitted
to wait

– -1 indicating that the task should wait indefinitely

– 0 indicating that the task should not wait. A value of 0 is equivalent to a
return code value of 8.

■ 4 - the system's recovery wait setting determines what action will be taken

■ 8 - the task should be aborted

7.4.5.35 Exit 38 - Quiesce Area Exit

Description: This exit is invoked when a quiesce point has been reached in the
processing of a DCMT QUIESCE command. Its purpose is to allow additional
site-specific actions to be taken in response to the quiesce.

Considerations: This exit is passed the quiesce identifier, an indication of what is
being quiesced and a list of files and their dataset names that are impacted by the
quiesce. With this information, the exit can take additional action, such as
constructing JCL or loading predefined JCL for a batch job to be submitted through
the internal reader.

Through return codes, the exit can direct IDMS to terminate or continue the quiesce
operation, or proceed as specified in the original DCMT QUIESCE command.

Chapter 7. User Exits 7-89

7.4 Numbered exits

Parameters: The exit is passed a single parameter described by DSECT #X38PL.
This structure contains the following information:

■ The nodename on which the quiesce command originated

■ The quiesce operation identifier

■ An indication of what is being quiesced (area, segment or DBNAME) and its
name

■ An array of file entries containing the following information for each file involved
in the quiesce:

– File name (<segment-name>.<area-name>)

 – VOLSER

 – DDNAME

– Data set name

Return Codes: By setting an appropriate return code, the exit can specify what
action IDMS should take with regard to the quiesce operation. The possible choices
are:

■ 0, to continue or terminate the quiesce operation as specified on the DCMT
QUIESCE command

■ 8, to continue the quiesce operation, overriding the option specified on the DCMT
QUIESCE command

■ 12, to terminate the quiesce operation, overriding the option specified on the
DCMT QUIESCE command

7-90 CA-IDMS System Operations

Chapter 8. Extended Addressing and Multitasking

8.1 About this chapter . 8-3
8.2 Extended addressing considerations . 8-4

8.2.1 AMODE and RMODE assignment . 8-4
8.2.2 Program pool usage . 8-5
8.2.3 Storage pool usage . 8-6
8.2.4 Treatment of dynamically-built control blocks 8-7

8.3 Multitasking support . 8-8
8.3.1 How DC handles concurrency . 8-8
8.3.2 How to implement OS/390 multitasking 8-11
8.3.3 How to implement BS2000/OSD multitasking 8-11
8.3.4 Coding considerations . 8-12
8.3.5 Monitoring multitasking performance 8-14
8.3.6 Multitasking information in dumps 8-15

8.3.6.1 OS/390 . 8-15
8.3.6.2 BS2000/OSD . 8-17

8.3.7 Routing system snaps to a sequential file 8-18

Chapter 8. Extended Addressing and Multitasking 8-1

8-2 CA-IDMS System Operations

8.1 About this chapter

8.1 About this chapter

This chapter contains:

■ Considerations for systems that support extended addressing

■ Information about OS/390 and BS2000/OSD multitasking support

Chapter 8. Extended Addressing and Multitasking 8-3

8.2 Extended addressing considerations

8.2 Extended addressing considerations

When you run a DC/UCF system under a system that supports extended addressing,
program execution is affected by the presence of multiple program and/or storage
pools. The following aspects of program execution are discussed below:

■ AMODE and RMODE assignment

■ Program pool usage

■ Storage pool usage

■ Treatment of dynamically-built control blocks

8.2.1 AMODE and RMODE assignment

Under any operating system than supports 31-bit addressing, each program must be
assigned:

■ An addressing mode (AMODE)

■ A residency mode (RMODE)

The table below summarizes ways to assign AMODE and RMODE to programs or
modules.

�� For a description of the IDD ADD/MODIFY LOAD MODULE statement that you
use to modify load modules in the data dictionary, see the CA-IDMS IDD DDDL
Reference Guide.

Module location Location mode specification

Load library Specify AMODE and RMODE according to instructions
provided in your operating system dependent documentation
on the linker/loader provided by your operating system vendor.

Data dictionary

(DDLDCLOD area)

Specify AMODE and RMODE in the IDD LOAD MODULE
statement:

MOD LOAD MODULE module-name

 .

 .

 .

 AMODE=ANY

 RMODE=ANY

The default for both AMODE and RMODE is ANY.

8-4 CA-IDMS System Operations

8.2 Extended addressing considerations

8.2.2 Program pool usage

Each program defined to the DC/UCF system is assigned a primary program pool
based on the program's reentrancy and residency mode and on the types of pools
defined. All IDMS-created programs (for example, maps, dialogs, subschema, and
code and edit tables) have AMODE 31 and RMODE ANY. A program assigned a
31-bit primary pool is also assigned a 24-bit alternate pool.

Program loading sequence: The table below shows the primary and alternate
pools assigned to each type of program. When a task invokes a program, DC/UCF
either loads the program in a pool or waits for enough space to load the program:

■ DC/UCF tries to load the program:

1. Into its primary pool

2. Into its alternate pool if the primary pool is short on space and an alternate
pool is assigned to the program

■ DC/UCF waits for space in either pool when both the primary pool and the
alternate pool are short on space.

Additionally, if a program assigned a 31-bit primary pool is invoked by a task for
which the location is BELOW, the program is loaded in to its 24-bit alternate pool.
DC/UCF does not try to load the program in to a 31-bit pool. This ensures the
program's addressability by other programs running under the same task.

Primary and alternate program pool assignments: DC/UCF always tries to
load a program into the program's primary pool. Under systems that support extended
addressing, if the primary pool is short on space DC/UCF loads the program in the
alternate pool. The existence of an alternate pool depends on the characteristics of the
program and what pools have been defined in addition to the required 24-bit program
pool.

Chapter 8. Extended Addressing and Multitasking 8-5

8.2 Extended addressing considerations

Program
characteristics

Conditions Primary pool Alternate pool

Nonreentrant or
quasi-reentrant
(RMODE=24)

 — 24-bit program
pool

 —

Reentrant
(RMODE=24)

24-bit reentrant pool
defined

24-bit reentrant
pool

24-bit program
pool

Reentrant
(RMODE=24)

24-bit reentrant pool
not defined

24-bit program
pool

 —

Nonreentrant or
quasi-reentrant
(RMODE=ANY)

31-bit program pool
defined

31-bit program
pool

24-bit program
pool

Nonreentrant or
quasi-reentrant
(RMODE=ANY)

31-bit program pool
not defined

24-bit program
pool

 —

Reentrant
(RMODE=ANY)

31-bit and 24-bit
reentrant pools
defined

31-bit reentrant
pool

24-bit reentrant
pool

Reentrant
(RMODE=ANY)

31-bit reentrant pool
defined; 24-bit
reentrant pool not
defined

31-bit reentrant
pool

24-bit program
pool

Reentrant
(RMODE=ANY)

31-bit reentrant pool
not defined; 24-bit
reentrant pool defined

24-bit reentrant
pool

 —

Reentrant
(RMODE=ANY)

31-bit reentrant pool
not defined; 24-bit
reentrant pool not
defined

24-bit program
pool

 —

8.2.3 Storage pool usage

The location of storage acquired during the execution of a program depends on the
following factors:

■ For user mode storage requests:

– The location (BELOW or ANY) of the task that invoked the program

– The specification (BELOW or ANY) in the LOC parameter of the #GETSTG
statement used to request the storage

– The pools defined at DC/UCF system generation time

■ For system mode storage requests, default is 31-bit storage

8-6 CA-IDMS System Operations

8.2 Extended addressing considerations

■ For all storage requests, space availability in the eligible pools and the types of
storage that the pools accommodate

XA storage pool 255, which you define on the SYSTEM system generation statement,
is reserved for system storage only. It is the XA equivalent of storage pool 0.

Storage is allocated as described below:

TASK(BELOW) 24-bit storage allocated

TASK(ANY);
#GETSTG(BELOW)

24-bit storage allocated

TASK(ANY; #GETSTG(ANY) ■ If any 31-bit pools contain the requested type
of storage, 31-bit storage allocated, if defined
and available

■ Otherwise, 24-bit storage allocated

8.2.4 Treatment of dynamically-built control blocks

Dynamically-built control blocks, for example program definition elements (PDEs) and
task definition elements (TDEs) can be built in an XA storage pool. Therefore, if you
do not define PDEs at system generation using either the UNDEFINED PROGRAM
COUNT parameter of the SYSTEM statement or the PROGRAM statement itself,
DC/UCF will build the PDEs dynamically in an XA storage pool.

DC/UCF may allocate from an XA storage pool all system-allocated storage that will
not be passed back to a user program regardless of the program's residency mode. For
control blocks that must reside below the 16-megabyte line, DC/UCF explicitly
requests storage below the line.

Chapter 8. Extended Addressing and Multitasking 8-7

8.3 Multitasking support

 8.3 Multitasking support

CA-IDMS is a multithreaded system that supports multiple diverse units of work called
tasks. In the past, these tasks shared one operating system subtask. With multitasking
support, several CA-IDMS tasks can execute concurrently and each task uses a
different predefined operating system subtask.

Multitasking support can be implemented in any supported operating system except the
VSE/ESA and VM/ESA operating system families. You can implement multitasking
support at sites that have either uniprocessors or multiprocessors.

Multitasking support can provide for better CPU utilization in a heavily used
multi-processor environment; for example, shops with dyadic or quadratic processors
that implement multitasking can run closer to full capacity. For example, user task A
may be issuing database operations (such as, an OBTAIN) and can be executing at the
same time as a DC/UCF user task B activity (such as, a GET STORAGE request).
Meanwhile, user task C is executing its user coded routines.

The table below contrasts nonmultitasking with OS/390 multitasking environments.

The next sections discuss these topics:

■ How DC handles concurrency

■ How to implement OS/390 multitasking support

■ How to implement BS2000/OSD multitasking support

■ Coding considerations at multitasking sites

 ■ Performance considerations

■ Multitasking information in dumps

■ Routing system snaps to a sequential file

Nonmultitasking Multitasking

Tasks execute consecutively. Tasks execute simultaneously.

No distinction is made between the types of
tasks performed.

Tasks are subdivided into families
based on the control blocks updated.

8.3.1 How DC handles concurrency

In a multitasking environment, the system must be able to allow multiple tasks to
update the same information. This is achieved in multiple ways, depending on the
update type and amount:

■ Under very specific circumstances, updating a single field with length 4 or 8 bytes
can be done with a single instruction (CS or CDS). No control block locking nor
task serialization is needed.

8-8 CA-IDMS System Operations

8.3 Multitasking support

■ If the update consists of multiple field updates, without calls to different
components, control block locking is used. This means that a lock is acquired, the
updates are made and the lock is released. The time that the lock is held is very
short, minimizing the chance on lock collisions.

■ In all other circumstances, task serialization is used. This means that the system
must control the order in which tasks are executed, so that no two tasks
simultaneously do the same work.

Most of the executable coding in CA-IDMS runs without task serialization.

Task serialization: To achieve this control, DC/UCF uses task serialization, a
technique that forces tasks to take turns based on a predefined class or family. Code
running in a mode type of ANY is not serialized. Much of the executable code in
CA-IDMS runs in mode type ANY.

Work modes: Work is divided into families of executable code called modes.
CA-IDMS uses a symmetrical design that allows each mode of work to be scheduled
on any available subtask, allowing the full capacity of the hardware to be used most
efficiently.

CA-IDMS multitasking supports these types of work modes:

Mode Code description

ANY Assigned to all user code and system code that doesn't require
serialization. ANY is for programs that will not update any storage
associated with another program. Therefore, it is safe for a program
assigned MPMODE ANY to run simultaneously with other
programs.

DB Assigned to modules that perform database activities such as record
processing, record locking, and concurrency control. Use the
#START macro to assign this MPMODE to user exits performing
database functions.

DC Assigned to all non-DB modules, including most user-written
programs running without storage protection. Use the #START
macro to assign this MPMODE to user exits performing DC
functions. (CA-ADS dialogs and COBOL programs can be assigned
MPMODE=ANY).

DRIVER Assigned to all CA-IDMS line drivers (for example, VTAM and
UCF). Use the #START macro to assign this MPMODE to user
exits that need to access driver-related control blocks as well as the
MASTER task LTT READY queue.

LOADER Assigned to program loading routines; user programs cannot be
assigned this mode.

USER Assigned to user programs executing with storage protection enabled
and to VS COBOL programs that are non-protected.

Chapter 8. Extended Addressing and Multitasking 8-9

8.3 Multitasking support

CALLER command: CALLER is a command that assigns the mode of the calling
program to fully-reentrant programs. CALLER means that the called program accepts
the MPMODE of the calling program and assumes full responsibility for all MPMODE
serialization rules. Therefore, the MPMODE does not need to be changed from that of
the calling program. User programs cannot be assigned MPMODE=CALLER.

You can specify at system generation that an application will run with an MPMODE
of ANY or SYSTEM (the default). SYSTEM means that DC/UCF determines the
MPMODE at run time.

Example: Suppose four user tasks are executing concurrently. Tasks 1 and 4 are
executing CA-ADS user code in ANY mode. Task 2 is executing DB mode and task
3 is executing DC mode. All four tasks execute on individual subtasks concurrently,
assuming your machine has four available processors:

8-10 CA-IDMS System Operations

8.3 Multitasking support

8.3.2 How to implement OS/390 multitasking

You implement multitasking support in system startup execution JCL. To do this, you
specify parameters in specific columns of the EXEC statement's PARM card. If the
PARM card specifies the DC/UCF system version number, column numbering starts in
the column after the system number. You use the PARM card to:

■ Enable multitasking support by specifying an M in column 21.

If you do not specify anything in column 21, DC/UCF ignores any value that you
specify in column 22 (see below).

■ Optionally specify the number of operating system subtasks for the OS/390
multitasking system in column 22. You can define up to 9 subtasks in the range 1
through 9.

By default, DC/UCF determines the number of subtasks by taking the number of
processors, plus 1 (one). You override this default by specifying a number in
column 22.

For example, the following PARM specification enables multitasking support for the
specified DC/UCF system and defines 4 subtasks:

 Column Column Column

 � 1 2

 1 � 1

 ────+----+----+----+---

//STARTUP EXEC PGM=DCUCFSYS,PARM='S=91 M4'

 .

 .

 .

8.3.3 How to implement BS2000/OSD multitasking

You can implement multitasking support through RHDCPARM or by supplying a
special input card to the startup module. Multitasking is enabled with the MAXTSN
parameter, as described below:

■ When MAXTSN is specified through RHDCPARM, it serves as the default for
the system. In the BS2000/OSD environment, RHDCPARM must be link edited
with the BS2KSTAR and IDMSDCB startup modules.

■ When MAXTSN is specified as an input card for the startup module, it serves as
an override for the parameter in RHDCPARM.

Note: When running in multitasking mode, the startup procedure may not reside in a
source library.

The MAXTSN specification is optional. The value of MAXTSN is set to 1 at
installation. This means that only 1 operating system subtask will be used.
Multitasking is, therefore, not in effect at installation. To enable multitasking, specify
a MAXTSN value in the range 2 through 8.

�� For the complete syntax and syntax rules for RHDCPARM, see Chapter 2, “System
Startup.”

Chapter 8. Extended Addressing and Multitasking 8-11

8.3 Multitasking support

Create a multitasking ENTER file: In a multitasking environment, create an
ENTER file, using a DO procedure of the following format:

/BEGIN-PROC LOG=�ALL,PAR=YES(PROC-PAR=(&SUBTASK=�)) �1�
/CALL-PROC (LIB=idms.dba.srclib,ELEM=FILE),PROC-PAR=(MODE=CV)

/ASSIGN-SYSOUT TO=idms.out.&SUBTASK

/ASSIGN-SYSLST TO=idms.lst.&SUBTASK

/ASSIGN-SYSDTA TO=�SYSCMD

/START-PROG �MOD(ELEM=BS2KSTAR,LIB=idms.dba.loadlib,RUN-MODE=�ADV)

REGION=7���

FREESTG=128

MAXTSN=2

SYSGEN OVERRIDES FOLLOW:

9�

CVNUM=171

END

/END-PROC

Notes:

1. The &SUBTASK parameter is a required keyword. The maintask executes this
procedure once for each subtask, using the following substitution parameter:

&SUBTASK=n

where n is the number of each sequential task.

This lets you make certain file assignments TSN specific. You must make files
like SYSOUT and SYSLST TSN specific. Furthermore, you only have to assign
the CDMSPAM file in the JCL processed by the MAINTASK (that is, when
&SUBTASK=0).

2. The BS2KSTAR input parameters are ignored when read by a subtask.

When running in a multitasking environment, the maintask TSN has to be specified on
all /INFORM-PROGRAM command entered from the operator console, even when the
request has been required by one of the subtasks. For example:

/INFORM-PROGRAM JOB-ID=<maintask-TSN>,MSG='message'

 8.3.4 Coding considerations

Assembler programs need to exercise caution when using shared storage. This is
because, in multitasking systems, this storage can change while the program executes,
even if the program does not request any DC/UCF services. These programs must
follow site-dependent mechanisms and standards that keep user programs from
simultaneously updating shared storage.

Assembler programs should use #ENQ to acquire shared storage and #DEQ to release
the storage. The #ENQ and #DEQ statements are described in CA-IDMS DML
Reference - Assembler.

8-12 CA-IDMS System Operations

8.3 Multitasking support

System mode user-exit routines: System mode user-exit routines at a DC/UCF
site must be recompiled if they are already installed to support multitasking execution.
The #START macro for each system mode exit routine must declare an MPMODE.
Use the following modes:

System mode exit routines with IBM calling conventions are invoked by DC/UCF in
CALLER mode. Since these exits are called by a routine with an MPMODE of DC,
such user exits must be able to execute in DC mode. To handle this, you can begin
with NOOP (X'47000004').

�� Details about user-exit routines and the #START macro are provided in Chapter 7,
“User Exits.”

Programs that execute without storage protection: A user-mode program that
is invoked without storage protection is able to modify control blocks within DC/UCF.
At program run time, DC/UCF always executes the program with an MPMODE of
USER, regardless of the system generation MPMODE specification.

For a program to execute with storage protection enabled, storage protection must be
enabled both at the system level and at the program level.

Mode For these user exits

ANY Exits 14, 15, 23, 27, 28, 29, 31, 37

DC Exits:

■ 0 - 9

 ■ 12

 ■ 13

 ■ 16

■ 19 - 22

■ 24 - 26

 ■ 30

■ 35 - 36

DB Exit 38

DRIVER Exits 17, 18, 32

None Exits 10, 11

Chapter 8. Extended Addressing and Multitasking 8-13

8.3 Multitasking support

8.3.5 Monitoring multitasking performance

Under OS/390, DC/UCF supports up to 9 subtasks; under BS2000/OSD, it supports a
maximum of 8 subtasks. At heavily used systems, it may be helpful to run DC/UCF
with more subtasks available than there are processors in the system. This strategy
can be used to provide for an overlap in subtask processing during page fault
processing.

Task waits may occur at run time when serialization has to take place.

Available monitoring information: You can obtain information about
multitasking performance using the following tools:

Command/report Use

DCMT DISPLAY
SUBTASK

Use to observe the frequency with which subtasks are
being dispatched. CA-IDMS multitasking will only
dispatch an additional subtask if the work load dictates
it.

Select fewer subtasks if you want to restrict the amount
of CPU CA-IDMS consumes; increase the number of
subtasks if you observe all the subtasks in a busy
condition.

DCMT DISPLAY
MPMODE

Displays, for each mode, how often the mode was
requested and how often a mode had to wait if another
subtask was executing in that mode. The highest
throughput is achieved when the request counts for ANY
mode is very high and the values in the Wait Counts are
very low.

DCMT DISPLAY MT Q
DEPTH

Displays the number of DC tasks that have to be queued
for system services before an additional subtask is
woken up. This number is called the multitasking queue
depth (MT Q DEPTH). Its default value is three.

DC/UCF only restarts (wakes up) a system subtask when
the MT queue depth is exceeded. This strategy is
defined to reduce overhead.

8-14 CA-IDMS System Operations

8.3 Multitasking support

Command/report Use

DCMT VARY MT Q
DEPTH

Allows dynamic changes to the MT queue depth.
Specifying a low value will cause more usage of
subtasks.

A too-low value will cause subtasks to wake up and go
back to sleep again without having done any work
because the queue was already emptied by one or more
other subtasks.

A too-high value will cause most or all work to be
processed by only one subtask, that is, it disables
multitasking.

The optimum value for the MT queue depth is
dependent on factors outside the control of DC (other
work on the CPUs; operating system dispatcher
parameters; paging rate; ...).

Therefore, it is advised to experiment with the value and
watch the results. The advised range of values is 0-9.

CA-IDMS Performance
Monitor

■ Use the online realtime and interval monitors to
observe the impact of multitasking on your runtime
production system. For example, you may need to
adjust your DC/UCF system to accommodate the
higher level of multiprogramming introduced by
multitasking The interval monitor also provides the
time spent waiting on mode locks.

■ Use PMARPT02, the Task Summary Report, to
measure changes in overall response time before
and after implementing multitasking.

8.3.6 Multitasking information in dumps

For OS/390 and BS2000/OSD, you can find information about subtask control areas in
dumps.

 8.3.6.1 OS/390

At an OS/390 multitasking site, it can be useful to find information about the subtask
control areas (SCAs) active at the time of the dump:

■ The SCA for an abended task can be located as described below:

1. Find location X'10'. The value at this location is the address of the
communication vector table (CVT).

2. At address X'00' into the CVT is the address of the TCB list.

3. At X'04' into the TCB list is the address of the currently active TCB.

Chapter 8. Extended Addressing and Multitasking 8-15

8.3 Multitasking support

OS/390 XA sites: At an OS/390 XA site, the address of the first ready
TCB is located at X'1C' into the ASCB.

4. At X'70' into the TCB is the address of the first TCB save area.

5. At X'00' into the save area is the address of the SCA assigned to the TCB.

Next, you need to determine whether this SCA is the SCA associated with the
abending task. To do this, check the flag at SCA + X'1C'. The SCA is active if
this flag is set to X'80'. If this SCA is not the active SCA, walk the chain of
SCAs as described below and check SCAs that are X'200' long.

At X'08' into the active SCA is the address of the TCE the active SCA is
executing.

■ The location of all active SCAs can be determined by walking the chain of SCAs,
beginning at the DC/UCF common system area (CSA). The address of the SCA
area is at X'518' into the CSA.

On occasion, there will be a dummy SCA for the ticker subtask. This occurs
when the ticker task has to wait for a lock for the internal control element (ICE)
chain. In this case, the SCA is used as working storage.

How to determine the task using a subtask: To determine the DC task using a
particular subtask, perform the appropriate operation:

■ If you have the task's SCA address, add X'08' to the SCA address. The resulting
address points to the SCACURTK field, which contains a pointer to the active
TCE, if there is one.

■ If you have the task's TCE address, add X'134' to the TCE address. The value at
this location points to the SCA when the task is active.

How to determine the task MPMODE: To determine the MPMODE a task was
running in, you will need an operating system dump. If you have a snap dump, you
will be able only to find the MPMODE for RHDCSNAP. Using the operating system
dump:

1. Add X'13C' to the task's TCE address. This gives you the location of the
TCEMPMOD field in the TCE.

2. Examine the value in the TCEMPMOD field. Possible values are:

Value MPMODE Setting

 � MPMODE=ANY

 4 MPMODE=DC

 8 MPMODE=DB

 C MPMODE=USER

 1� MPMODE=LOADER

 14 MPMODE=DRIVER

How to determine the locks held by a task: To determine the locks held by the
task, you will need an operating system dump. If you have a snap dump, you will be
able only to find the locks held for RHDCSNAP. Using the operating system dump,
locate the internal lock elements (ILEs) that document the locks held by the task:

1. The current TCE lock count is maintained at X'148' into the TCE.

8-16 CA-IDMS System Operations

8.3 Multitasking support

2. The address of the first ILE is at X'144' into the TCE.

3. At X'08' into the ILE is the address of the next ILE.

 8.3.6.2 BS2000/OSD

At a multitasking site, it can be useful to find information about the subtask control
area (SCA) associated with the abending BS2000/OSD task:

■ The address of the SCA associated with an abended task can be found at absolute
address X'FD0'.

■ The location of all active SCAs can be determined by walking the chain of SCAs,
beginning at the DC/UCF common system area (CSA). The address of the SCA
area is at X'518' into the CSA.

On occasion, there will be a dummy SCA for the ticker subtask. This occurs
when the ticker task has to wait for a lock for the internal control element (ICE)
chain. In this case, the SCA is used as working storage.

How to determine the task using a subtask: To determine the DC task using a
particular subtask, perform the appropriate operation:

■ If you have the task's SCA address, add X'08' to the SCA address. The resulting
address points to the SCACURTK field, which contains a pointer to the active
TCE, if there is one.

■ If you have the task's TCE address, add X'134' to the TCE address. The value at
this location points to the SCA when the task is active.

How to determine the task MPMODE: To determine the MPMODE a task was
running in, you will need an operating system dump. If you have a snap dump, you
will be able only to find the MPMODE for RHDCSNAP. Using the operating system
dump:

1. Add X'13C' to the task's TCE address. This gives you the location of the
TCEMPMOD field in the TCE.

2. Examine the value in the TCEMPMOD field. Possible values are:

Value MPMODE Setting

 � MPMODE=ANY

 4 MPMODE=DC

 8 MPMODE=DB

 C MPMODE=USER

 1� MPMODE=LOADER

 14 MPMODE=DRIVER

How to determine locks held by the task: To determine the locks held by the
task, you will need an operating system dump. If you have a snap dump, you will be
able only to find the locks held for RHDCSNAP. Using the operating system dump,
locate the internal lock elements (ILEs) that document the locks held by the task:

1. The current TCE lock count is maintained at X'148' into the TCE.

2. The address of the first ILE is at X'144' into the TCE.

Chapter 8. Extended Addressing and Multitasking 8-17

8.3 Multitasking support

3. At X'08' into the ILE is the address of the next ILE.

8.3.7 Routing system snaps to a sequential file

You can route system snaps to a sequential log file in a multitasking environment.
You can do this even when you have directed the log to the data dictionary
DDLDCLOG area in the system definition.

Routing system snaps to a sequential file provides reliable system snaps. While the
DC/UCF system is taking a system snap for one subtask, other subtasks are
temporarily frozen. This ensures the integrity of the storage being snapped.

DC/UCF uses the MPMODE DC to take a system snap. Because the MPMODE DB
may be held by one of the frozen subtasks, the system may not be able to write the
snap to the data dictionary log area. Therefore, DC/UCF attempts to write system
snaps to a sequential file in a multitasking environment.

Steps to route system snaps: To route system snaps to a sequential file, perform
these steps:

1. Specify LOG DATABASE in the system generation SYSTEM statement.

2. Allocate a sequential disk file using the following DCB specifications:

3. Include the following statement in the JCL to start up the DC/UCF system:

OS/390 BS2000/OSD

RECFM must be FBA. Default is SAM.

LRECL must be 133. Default record length is variable.

BLKSIZE must be a multiple of 133.
A large block size will require fewer
I/O operations to complete the system
snap and, therefore, will result in a
faster snap.

Operating System DC/UCF System Startup

OS/390 //CDMSLOGA DD DSN=idms.syssnap,DISP=SHR

idms.syssnap = data set name of the sequential log file

for system snaps

BS2000/OSD

/SET-FILE-LINK L-NAME=CDMSLOGA,F-NAME=idms.syssnap

idms.syssnap = filename of the sequential log file for

 system snaps

8-18 CA-IDMS System Operations

8.3 Multitasking support

Considerations: Here are some general considerations for routing system snaps to
a sequential file:

■ If the log is directed to a sequential file in the system definition (LOG
FILE1/FILE2), system snaps are written to that file.

■ If the log is directed to the data dictionary log area in the system definition (LOG
DATABASE), system snaps are written to a sequential file with a ddname of
CDMSLOGA. If the system startup JCL does not include a DD statement for
CDMSLOGA, DC/UCF will not take system snaps.

■ The size in bytes of the sequential disk file should be at least three times the size
in bytes of the DC/UCF region. If the space allocated to the sequential file is not
large enough to hold an entire system snap, DC/UCF will terminate abnormally
with an x37-type system abend code.

■ DC/UCF opens and closes the sequential disk file for each system snap. If the
startup JCL specifies DISP=SHR for the file, DC/UCF writes to the beginning of
the file each time a snap occurs. To copy each system snap to another file before
the snap is overwritten, you can use the WTOEXIT user exit. Write the exit
routine to:

1. Intercept the message written to the log when the snap is complete. The
message number is DC009101.

2. Submit a job that copies the system snap file to another file.

This use of the WTOEXIT user exit is similar to using the exit to submit jobs for the
ARCHIVE JOURNAL and ARCHIVE LOG utility statements.

Chapter 8. Extended Addressing and Multitasking 8-19

8-20 CA-IDMS System Operations

 Chapter 9. Statistics

9.1 Overview . 9-3
9.2 System-wide statistics . 9-4

9.2.1 When system-wide statistics are written 9-4
9.2.2 Categories of statistics . 9-5

9.3 Task and external request unit statistics 9-10
9.3.1 Enabling statistics collection . 9-10
9.3.2 How statistics accumulate at run time 9-11

9.3.2.1 DC/UCF statistics collected . 9-11
9.3.2.2 Non-SQL DB statistics . 9-12
9.3.2.3 SQL DB statistics . 9-12

9.4 Transaction statistics . 9-14
9.4.1 Enabling statistics collection . 9-14
9.4.2 How statistics accumulate at run time 9-15

9.5 CA-ADS dialog statistics . 9-17
9.5.1 Enabling statistics collection . 9-17
9.5.2 How statistics accumulate at run time 9-18
9.5.3 Categories of CA-ADS statistics . 9-19

9.6 Histograms . 9-21
9.6.1 Overview of histograms . 9-21
9.6.2 How histograms accumulate at run time 9-23
9.6.3 System-wide histograms . 9-23
9.6.4 Task histograms . 9-24
9.6.5 Line histograms . 9-26
9.6.6 Overriding histogram defaults . 9-26

9.6.6.1 Coding #HSTDEF macros . 9-27
9.6.6.2 Creating the RHDCHIST module 9-28

9.7 User-written statistics support . 9-31
9.8 Examining statistics . 9-32

9.8.1 Current run-time statistics . 9-32
9.8.2 Logged statistics . 9-32

Chapter 9. Statistics 9-1

9-2 CA-IDMS System Operations

9.1 Overview

 9.1 Overview

DC/UCF statistics report on system resource usage. These statistics are written to the
system log file. The table below lists the different types of DC/UCF statistics that can
be collected. This chapter discusses:

■ Statistics written to the system log at run time. Separate information is provided
for:

 – System-wide statistics

– Task and external request unit statistics

 – Transaction statistics

– CA-ADS dialog statistics

 – Histograms

■ User-written statistics support available through use of user exits that gain control
during various statistics collection activities.

■ Options for examining statistics that have been written to the system log.

Types of DC/UCF statistics

Statistic Information collected

System General resource-usage statistics for the entire system (for
example, program pool, queue area, line, physical terminal, and
task statistics).

These statistics are always collected.

Task and
external request

Detailed statistics for each executing task or external request unit.
System and database usage is tracked.

These statistics are optional.

Transaction Detailed statistics for each executing transaction. System and
database usage is tracked.

These statistics are optional.

Dialogs Detailed statistics for all or selected CA-ADS dialogs. Control
commands, system usage, and database usage are tracked.

These statistics are optional.

Histograms Numerical totals of how many times specific events or limits
occur at run time.

These statistics are optional.

Chapter 9. Statistics 9-3

9.2 System-wide statistics

 9.2 System-wide statistics

DC/UCF always collects system-wide statistics because they require minimal overhead
and they provide valuable information for tuning and maintaining the DC/UCF system.
DC/UCF system-wide statistics are grouped into six categories. The table below lists
statistics collected for each category. The categories are:

 ■ System statistics

 ■ DC/UCF statistics

■ Non-SQL DB statistics

■ SQL DB statistics

 ■ Line statistics

■ Physical terminal statistics

 ■ Program statistics

 ■ Queue statistics

 ■ Task statistics

9.2.1 When system-wide statistics are written

System-wide statistics are written to the DC/UCF system log at each of the following
times:

■ At normal system shutdown.

■ At the statistics interval specified in the system generation SYSTEM statement:

SYSTEM

 .

 .

 .

STATISTICS INTERVAL interval-time

The statistics interval can be varied at run time by means of the DCMT VARY
STATISTICS command.

■ On explicit request by means of a DCMT WRITE STATISTICS command.

�� For information about the SYSTEM statement, see CA-IDMS System Generation.

Details about DCMT statements are given in CA-IDMS System Tasks and Operator
Commands.

9-4 CA-IDMS System Operations

9.2 System-wide statistics

9.2.2 Categories of statistics

This section lists the information collected for each category of system-wide statistics.
For details about interpreting these statistics, see:

 ■ CA-IDMS Reports

■ CA-ADS Reference Guide

■ CA-IDMS System Generation

■ CA-IDMS Performance Monitor User Guide

■ Chapter 10, “System Performance”

 System statistics

■ Number or amount of:

 Journal writes

Program pool loads
Program pool waits
Pages loaded into the program pool

Logical terminal autotasks started

Requests for storage satisfied in the first
and second scan of the storage pools (collected separately)

SET TIME WAIT requests issued
SET TIME POST requests issued
SET TIME START requests issued
SET TIME CANCEL requests issued

 Tasks processed
 Tasks abended

Deadlock detector dispatch count
Pass 1 (stalled task) dispatch count
Pass 2 (stalled task) dispatch count
Stalled tasks processed in pass 1
Stalled tasks processed in pass 2

System tasks currently active
Tasks currently active (both system and user mode)
Times maximum-tasks condition detected
Task threads aborted for exceeding runaway time
System tasks processed

 PGFREE requests
Fixed pages freed

Chapter 9. Statistics 9-5

9.2 System-wide statistics

Reentrant pool loads
Reentrant pool waits
Pages loaded into the reentrant pool
Pages that became eligible for release
Pages actually released

XA program pool loads
XA program pool waits
Pages loaded into the XA program pool
XA reentrant pool loads
XA reentrant pool waits
Pages loaded into the XA reentrant pool

Storage pool waits
 PGFIX requests
 Pages fixed

■ Number of times:

DPE threshold exceeded
RCE threshold exceeded
RLE threshold exceeded
ILE threshold exceeded
Short-on-storage conditions detected

DPEs in use concurrently
RCEs in use concurrently
RLEs in use concurrently
Entries in the TCE stack (that is,
TCE stack high-water mark)

■ Total number of:

Deadlocked tasks with COND=NONE
Deadlocked tasks with COND=DEAD

 Deadlock victims
Deadlock victims with COND=DEAD
Deadlock victims with COND=NONE

■ Maximum number of:

COND=DEAD tasks deadlocked in a single pass
COND=NONE tasks deadlocked in a single pass

 DC statistics

■ Number or amount of:

 Programs called
 Program loaded

 Terminal reads
 Terminal writes

9-6 CA-IDMS System Operations

9.2 System-wide statistics

Terminal I/O errors

GET TIME requests
SET TIME requests

 Database calls

 Queue GETs (DC/UCF)
 Queue PUTs (DC/UCF)
 Queue DELETEs (DC/UCF)

 Scratch GETs
 Scratch PUTs
 Scratch DELETEs

 #GETSTG requests
 #FREESTG requests

CPU time spent in user mode
CPU time spent in system mode
Wall-clock time spent in wait state

■ Maximum number or amount of:

Entries in the TCE stack (that is, TCE stack high water mark)
Storage held at one time (that is, task storage high water mark)

■ Total number of system service calls

Non-SQL DB statistics

■ Number or amount of:

 Pages read
 Pages written
 Pages requested

CALC records stored with no overflow
CALC records stored with overflow
VIA records stored with no overflow
VIA records stored with overflow

 Records requested
Records current of transaction

 Database calls
 Fragments stored
 Records relocated

 Locks acquired
Share locks held
Non-share locks held

 Locks freed

Chapter 9. Statistics 9-7

9.2 System-wide statistics

 SR8 splits
 SR8 spawns
 SR8's stored
 SR8's erased
 SR7's stored
 SR7's erased
 Btree searches

Btree levels searched
 Orphans adopted

Levels searched (best case)
Levels searched (worst case)

■ Total number of locks

Miscellaneous DB statistics: Number or amount of:

 Records updated
Pages found in cache
Pages found in prefetch buffer

SQL DB statistics: Number or amount of:

SQL commands executed
 Rows fetched
 Rows inserted
 Rows updated
 Rows deleted
 Sorts performed

Minimum rows sorted
Maximum rows sorted

 AM recompiles

Line statistics: For each line, the number of:

 Reads performed
Read errors that occurred

 Writes performed
Write errors that occurred

Physical terminal statistics: For each physical terminal, the number of:

 Reads performed
Read errors that occurred

 Writes performed
Write errors that occurred

For each physical terminal, the total or cumulative:

Number of responses
 Response time

Terminal I/O time

9-8 CA-IDMS System Operations

9.2 System-wide statistics

Program statistics: For each program, the number of:

 Times called
 Times loaded

Times waited to load
Program check errors

Queue statistics: The number of times each queue's associated task was invoked to
process queue records.

Task statistics: Number of times each task code was invoked.

Chapter 9. Statistics 9-9

9.3 Task and external request unit statistics

9.3 Task and external request unit statistics

A task is the basic unit of work under DC/UCF. Each task consists of one or more
programs. An external request unit is a unit of program activity initiated from outside
the DC/UCF region/partition. For example, external transactions are initiated to handle
a batch program's database requests.

You enable task and external request unit statistics to:

■ Monitor and tune individual application programs.

■ Enforce limits on task resource usage.

�� For more information on resource limits, see CA-IDMS System Generation.

Collection of these statistics is optional because additional overhead is required to
collect the statistics and because a large volume of data is generated. One statistics
record is maintained per task thread for the life of the task or external request unit.
These statistics records can quickly fill the system log file.

For tasks, it is sometimes sufficient to collect task histograms instead of full task and
external request unit statistics. However, when you are collecting task histograms, you
cannot also collect task and external request unit statistics.

�� For information about histograms, see 9.6, “Histograms” on page 9-21.

9.3.1 Enabling statistics collection

Enable collection of statistics for tasks and external request units in the system
generation SYSTEM statement:

SYSTEM version-number

 .

 .

 .

STATISTICS TASK WRITE NOUSER/USER

The STATISTICS keyword controls statistics collection.

TASK WRITE enables collection of both task and external request unit statistics.

The NOUSER/USER clause specifies how CPU-time statistics are maintained:

■ NOUSER — Statistics for system-mode and user-mode execution are maintained
as a single statistic. This statistic represents total task or external request unit
execution time.

■ USER — System-mode and user-mode statistics are maintained separately.

9-10 CA-IDMS System Operations

9.3 Task and external request unit statistics

9.3.2 How statistics accumulate at run time

Task and external request unit statistics are accumulated in control blocks at run time.
Once allocated, control blocks for a task or external request unit are maintained as
long as the task or transaction is active.

Statistics in the control blocks are written to the DC/UCF log file when the task or
external request unit terminates, or when you issue a DCMT WRITE STATISTICS
command at run time.

Task and external request unit statistics are sorted:

■ Task statistics are sorted by user identifier, by logical terminal identifier, and by
task code.

■ External request unit statistics are sorted by accounting data and by program
name.

Statistics for tasks, external requests, and transactions: The following
sections summarize the statistics collected when you enable statistics collection for
tasks, external request units, and transactions. Note that even when SQL is used to
access data, non-SQL database statistics (designated non-SQL IDMS statistics in the
table) are still collected.

9.3.2.1 DC/UCF statistics collected

■ Number or amount of:

 Programs called
 Programs loaded

 Terminal reads
 Terminal writes

Terminal I/O errors

 #GETSTG requests

 Scratch GETs
 Scratch PUTs
 Scratch DELETEs

 Queue GETs
 Queue PUTs
 Queue DELETEs

GET TIME requests
SET TIME requests

 Database calls

CPU time spent in user mode
CPU time spent in system mode
Wall-clock time spent in wait state

 #FREESTG requests

Chapter 9. Statistics 9-11

9.3 Task and external request unit statistics

■ Maximum number or amount of:

Entries in the TCE stack (that is, TCE stack high-water mark)
Storage held at one time (that is, task storage high-water mark)

■ Total number of system service calls

9.3.2.2 Non-SQL DB statistics

■ Number or amount of:

 Pages read
 Pages written
 Pages requested

CALC records stored with no overflow
CALC records stored with overflow
VIA records stored with no overflow
VIA records stored with overflow

 Records requested
Records current of transaction

 Fragments stored
 Records relocated

 Locks acquired
Share locks held
Non-share locks held

 Locks freed

 SR8 splits
 SR8 spawns
 SR8's stored
 SR8's erased
 SR7's stored
 SR7's erased
 Btree searches

Btree levels searched
 Orphans adopted

Levels searched (best case)
Levels searched (worst case)

■ Total number of locks

9.3.2.3 SQL DB statistics

Number or amount of:

SQL commands executed
 Rows fetched
 Rows inserted
 Rows updated
 Rows deleted
 Sorts performed

9-12 CA-IDMS System Operations

9.3 Task and external request unit statistics

Minimum rows sorted
Maximum rows sorted

 AM recompiles

Chapter 9. Statistics 9-13

9.4 Transaction statistics

 9.4 Transaction statistics

A transaction is a series of tasks that perform one logical activity under DC/UCF. For
example, a transaction typically includes all tasks that display, retrieve, and process
data on a single map.

Note: This type of transaction differs from the transaction CA-IDMS uses to manage
resources and to control recovery.

Transaction statistics are initiated and terminated under the control of the application
program and as such have no impact on recovery. The same type of information is
collected for transactions as is collected for individual tasks. Statistics that are
collected for transactions are listed in the previous table.

9.4.1 Enabling statistics collection

To collect transaction statistics, it is necessary to:

1. Prepare the system to collect transaction statistics at run time

2. Prepare tasks in the transaction for which the statistics are to be collected

Preparing the system: To prepare the system to collect transaction statistics,
perform the following steps:

1. Enable task statistics, since transactions are composed of tasks. For more
information, see 9.3, “Task and external request unit statistics” on page 9-10.

2. Enable transaction statistics in either of the following ways:

■ At system generation time, specify in the SYSTEM statement:

SYSTEM version-number

 .

 .

 .

STATISTICS TASK TRANSACTION

The keyword TRANSACTION enables collection of transaction statistics.

■ At run time, issue a DCMT command:

DCMT VARY STATISTICS TRANSACTION ON

The keywords TRANSACTION ON enable collection of transaction statistics.

Preparing tasks in the transaction: A transaction can contain several tasks. To
collect statistics for a transaction:

■ Enable transaction statistics in the transaction's first task. To do this, include the
appropriate command in one of the task's programs:

– BIND TRANSACTION STATISTICS (COBOL, PL/I)

– #TRNSTAT BIND (Assembler)

9-14 CA-IDMS System Operations

9.4 Transaction statistics

At run time, transaction statistics are collected from the beginning of the current
task.

■ Disable transaction statistics by including the appropriate command in the program
that ends the transaction:

– END TRANSACTION STATISTICS (COBOL, PL/I)

– #TRNSTAT END (Assembler)

Statistics collection ends when this command is issued. To write the collected
transaction statistics to the system log at the same time, include the WRITE clause
in the command that ends the transaction.

�� For specific information on COBOL, PL/I,or Assembler commands, refer to
CA-IDMS DML Reference - COBOL, CA-IDMS DML Reference - PL/I, and CA-IDMS
DML Reference - Assembler, respectively.

9.4.2 How statistics accumulate at run time

Transaction statistics accumulate in system control blocks at run time. The statistics
are sorted by user and by logical terminal. As shown in the figure below, transaction
statistics accumulation:

1. Begins at the start of a task containing a command that binds transaction statistics.
Transaction statistics are accumulated for the logical terminal associated with the
current task.

2. Stops when a program in the transaction issues a command to end the transaction.

Chapter 9. Statistics 9-15

9.4 Transaction statistics

Copying to the DC/UCF log or program variable storage: Accumulated
transaction statistics can be copied at the discretion of the application, to the DC/UCF
system log file and/or to a specified location in the application program's variable
storage. Transaction statistics are copied:

■ Optionally during the transaction when requested by a command in one of the
transaction's programs:

– ACCEPT TRANSACTION STATISTICS (COBOL, PL/I)

– #TRNSTAT ACCEPT (Assembler)

The command can be issued at any point in the transaction. The copied statistics
remain in the transaction statistics control blocks.

■ Automatically during the transaction when successive BIND TRANSACTION
STATISTICS commands are issued. In this case, transaction statistics blocks are
cleared for continued use after the statistics are copied.

■ Optionally at the end of the transaction, based on the command that ends the
transaction. In this case, transaction statistics blocks are freed after the statistics
are copied.

�� For the layout of transaction records in the log, see CA-IDMS Reports.

9-16 CA-IDMS System Operations

9.5 CA-ADS dialog statistics

9.5 CA-ADS dialog statistics

Statistics for CA-ADS/Batch dialogs are collected in a separate log file.

�� For information on CA-ADS dialogs, refer to CA-ADS Reference Guide.

For information on CA-ADS/Batch dialog statistics, refer to CA-ADS Batch User
Guide.

9.5.1 Enabling statistics collection

To collect statistics for CA-ADS dialogs:

1. Enable task statistics as discussed in 9.3, “Task and external request unit statistics”
on page 9-10.

2. Enable transaction statistics discussed in 9.4, “Transaction statistics” on
page 9-14.

3. Enable dialog statistics in either of the following ways:

■ At system generation time, specify in the ADSO statement:

ADSO

 .

 .

 .

DIALOG STATISTICS ON ALL/SELECTED

The keywords STATISTICS ON enable collection of dialog statistics. The
keyword SELECTED directs collection of statistics for selected dialogs only
(see below).

■ At run time issue a DCMT command:

DCMT VARY ADSO STATISTICS ON ALL/SELECTED DIALOGS

The keywords ADSO STATISTICS ON enable collection of dialog statistics.
The keyword SELECTED directs collection of statistics for selected dialogs
only (see below).

The ALL/SELECTED clause specifies:

■ ALL — Statistics are collected for all dialogs that are executed.

■ SELECTED — Statistics are collected only for preselected dialogs when they are
executed. You preselect dialogs for statistics in either of the following ways:

– At system generation time, name the dialog in a PROGRAM statement and
specify that ADSO statistics are to be collected for the dialog:

PROGRAM dialog-name

 .

 .

 .

ADSO DIALOG STATISTICS

Chapter 9. Statistics 9-17

9.5 CA-ADS dialog statistics

– At run time, name the dialog in a DCMT VARY PROGRAM command and
specify that ADSO statistics are to be collected for the dialog:

DCMT VARY PROGRAM dialog-name ADSO STATISTICS

9.5.2 How statistics accumulate at run time

When dialog statistics collection is enabled, the DC/UCF system collects statistics as
follows:

■ Statistics for overhead activity are collected and written to the DC/UCF system
log whenever overhead activity is performed. This occurs once at the beginning
of a CA-ADS application and once at the end.

The CA-ADS statistics block identifier for statistics accumulation is either the
dialog name (if statistics were explicitly enabled for the dialog) or $ADS@@AO
for a catch-all statistics block.

■ Statistics for dialogs are collected each time a dialog issues a control command.
These statistics are not written immediately to the system log. Dialog statistics are
sorted by user and by logical terminal. Dialog statistics accumulate in transaction
statistics blocks (TSBs) and CA-ADS statistics blocks (ASBs).

�� For more details about how statistics accumulate in TSBs and ASBs, see the
CA-ADS Reference Guide.

Each time dialog statistics are written to the system log, the TSBs and ASBs that
contained the newly written statistics are initialized. The TSBs and ASBs are freed
only when the application terminates. Note, however, that during a pseudo-converse
they may be written to the scratch area along with record buffer blocks.

When statistics are written to the system log: Dialog statistics are written to
the system log:

■ When the number of statistics accumulations equals the predefined checkpoint
interval

■ When the application terminates

Checkpoint intervals: To establish a checkpoint interval for dialog statistics,
perform either of the following steps:

■ At system generation time, use the ADSO statement:

ADSO

 .

 .

 .

DIALOG STATISTICS CHECKPOINT interval-number

■ At run time, issue the following DCMT command:

DCMT VARY ADSO STATISTICS CHECKPOINT INTERVAL interval-number

9-18 CA-IDMS System Operations

9.5 CA-ADS dialog statistics

9.5.3 Categories of CA-ADS statistics

This section identifies statistics for CA-ADS dialogs. At dialog execution time,
statistics are collected on control commands, general dialog execution, and record
buffer block (RBB) usage:

Explicitly coded control commands: Statistics collected are the number of times
these commands are executed:

 DISPLAY
 INVOKE

LINK TO DIALOG
LINK TO PROGRAM

 RETURN
 RETURN CONTINUE
 TRANSFER
 LEAVE ADS
 LEAVE APPLICATION
 ABORT

Implicitly coded control commands: Statistics collected are the number of times
these commands are executed:

 DISPLAY
 DISPLAY CONTINUE
 INVOKE

LINK TO DIALOG
LINK TO PROGRAM

 RETURN
 RETURN CONTINUE
 TRANSFER
 LEAVE ADS
 LEAVE APPLICATION
 ABORT

General dialog execution: Statistics collected are:

 ■ Number of:

Premap process executions
Response process executions
Calls to the CA-ADS statistics accumulation block (ASA)
Explicit GET SCRATCH commands
Explicit PUT SCRATCH commands
Explicit DELETE SCRATCH commands
Explicit WRITE TO PRINTER commands
PUT NEW DETAIL commands
PUT CURRENT DETAIL commands
GET DETAIL commands

 ■ Size of:

Chapter 9. Statistics 9-19

9.5 CA-ADS dialog statistics

Fixed dialog block (FDB)
Variable dialog block (VDB)

■ Highest and lowest link level at which dialog executed

Record buffer block (RBB) usage: Statistics include:

■ Number of times RBBs are put in scratch records

■ Greatest amount of:

RBB storage used for all dialogs
RBB free space acquired for the dialog

■ Least amount of RBB storage used for all dialogs

■ Amount of space when:

Greatest amount of RBB storage used
Least amount of RBB storage used

■ Highest and lowest number of RBBs used

9-20 CA-IDMS System Operations

9.6 Histograms

 9.6 Histograms

Histograms track the frequency of specific events. For example, one histogram tracks
the number of programs loaded into the program pool. The following pages discuss:

■ An overview of histograms

■ How histogram statistics accumulate

 ■ System-wide histograms

 ■ Task histograms

 ■ Line histograms

■ Overriding histogram defaults

Note: To collect task histograms, you must disable collection of task and external
request unit statistics.

9.6.1 Overview of histograms

Histograms track how many times a specific event occurs at run time. Histograms
organize information according to subcategories (that is, value ranges) meaningful to
the event being tracked.

For example, the histogram for program pool usage keeps track of the size of
programs loaded into the pool. The sample histogram shown below counts the number
of programs smaller than 4096 bytes, between 4097 and 16384 bytes, between 16385
and 66536 bytes, and above 66537 bytes:

Sample histogram:

How many programs loaded: | 14 32 9 1 |

 |______|______|______|______|

Size of programs (bytes): � 4�96 16384 66536

Each range (for example, �-4�96) defines the bin

in which the range counter is kept.

The range counter for each bin is automatically incremented by 1 whenever an event
in the appropriate range occurs. To continue the above example, assume that two
programs between 4096 and 16384 bytes are loaded in the program pool:

The histogram is updated:

How many programs loaded: | 14 34 9 1 |

 |______|______|______|______|

Size of programs (bytes): � 4�96 16384 66536

Two more programs were loaded in the 4�96-16384 range.

Sample histogram report: A sample of a histogram report (SREPORT 001)
appears below:

�� For more information on SREPORTs, see CA-IDMS Reports.

Chapter 9. Statistics 9-21

9.6 Histograms

 REPORT NO. �1 IDMS STATISTICS - HISTOGRAM REPORT R12.� �9/24/91 PAGE 8

SELECTED FROM: 91�65 2�:3� TO: 91�65 21:5�

ACTUAL: 91�65 2�:32 TO: 91�65 21:�7

 STAT STAT

 RECORD RECORD

SUB-TYPE GW-DESCRIPTION BINS LOW END INCREMENT LOW VALUE HIGH VALUE DATE TIME

HISTOGRAM FOR SUB-TYPE �8 PROGRAMS LOADED BY TASK 1� 1 2 292 � 91�65 21:�6

 BELOW 1 292

 1 TO 2 38

 3 TO 4 7

 5 TO 6 3

 7 TO 8 �

9 TO 1� 1

11 TO 12 �

13 TO 14 �

15 TO 16 1

17 TO 18 �

19 TO 2� �

 21 AND ABOVE... �

 TOTAL: 342

Types of histograms: System-wide histograms, task histograms, and line
histograms can be collected. For each of these types of histogram, one or more classes
of events can be tracked simultaneously. Statistics are maintained separately for each
class.

Bins allocated at run time: Bins for each histogram class are allocated at run time
based on the low value and range increment specified for the class at startup time:

1. The low value for the histogram class specifies the start of the first bin in that
class. For example, assume that a histogram is being kept of the database calls
per task:

First bin: | |

 |____|

 5 x

5 - A low value of 5 is established;

information is not collected for tasks that issue

four or fewer database calls.

x - The range for this bin is determined

by the range increment - see below).

9-22 CA-IDMS System Operations

9.6 Histograms

2. The range increment for the histogram class specifies the range of values, starting
from the low value, to be collected by each bin in the class. To continue the
above example:

The range increment is set at 3:

| | | | | | | | | | |

|____|____|____|____|____|____|____|____|____|____|

5 8 11 14 17 2� 22 25 28 31 34

The first bin counts tasks that

issue from 5 to 7 database calls.

9.6.2 How histograms accumulate at run time

Histogram statistics accumulate in system control blocks at run time. Histograms are
written to the DC/UCF log at the following times:

■ At normal system shutdown

■ At the statistics interval established by the STATISTICS parameter of the system
generation SYSTEM statement

■ On explicit request by means of a DCMT WRITE STATISTICS command

 9.6.3 System-wide histograms

System-wide histograms are always collected. The table below lists the classes of
histograms automatically collected for the system, along with the default low value and
increment for each class. Bins for each histogram class are built based on the low
value and increment for the class. By default, ten bins are maintained for each
histogram class:

Size (in bytes) of Class name Low value Increment

User-defined records written to
the journal because of
PUTJRNL requests

JRNLSIZE 100 100

Programs loaded into the
program pool

PROGSIZE 250 250

Queue records written to the
queue data set

QUESIZE 100 100

Scratch records written to the
scratch data set

SCRSIZE 100 100

Storage requested by
#GETSTG TYPE=USER

USTGSIZE 50 50

Storage requested by
#GETSTG (all types)

GSTSIZE 50 50

Chapter 9. Statistics 9-23

9.6 Histograms

 9.6.4 Task histograms

Collection of task histograms is optional.

At system run time, DC/UCF maintains a histogram for each of the classes of task
histogram listed in the table below. DC/UCF collects histogram information for all
tasks executed on the entire system.

To enable collection of task histograms, use the system generation SYSTEM
statement:

SYSTEM version-number

 .

 .

 .

STATISTICS TASK COLLECT NOUSER/USER

The STATISTICS keyword controls statistics collection.

TASK COLLECT enables collection of task histograms.

The NOUSER/USER clause specifies how CPU-time statistics are maintained:

■ NOUSER — Statistics for system-mode and user-mode execution are maintained
as a single statistic. This statistic represents total task or external request unit
execution time.

■ USER — System-mode and user-mode statistics are maintained separately.

Task histogram classes: Bins for each histogram class are built based on the low
value and increment for the class. Default values are shown in the following tables.
By default, ten bins are maintained for each histogram class.

9-24 CA-IDMS System Operations

9.6 Histograms

* Expressed in units of ten-thousandths of a second

Number per task of: Class name Low value Increment

Programs called PROGCALL 1 2

Programs loaded PROGLOAD 1 1

Terminal reads issued TERMREAD 1 2

Terminal writes issued TERMWRIT 1 2

Terminal I/O errors TERMERR 1 2

#GETSTG requests issued GSTGCNT 1 2

#GETSCR requests issued GSCRCNT 1 2

#PUTSCR requests issued PSCRCNT 1 2

#DELSCR requests issued DSCRCNT 1 2

#GETQUE requests issued GQUECNT 1 2

#PUTQUE requests issued PQUECNT 1 2

DELQUE requests issued DQUECNT 1 2

#GETIME requests issued GTIMCNT 1 2

#SETIME requests issued STIMCNT 1 2

Database calls issued DBCALLS 2 2

Maximum number of entries in
the TCE stack

HISTACK 50 20

Amount of time per task in: Class name Low value * Increment*

User mode USERTIME 10 10

System mode SYSTIME 10 10

Wait state WAITTIME 100 100

Number per task of the
following in concurrent use:

Class name Low
value

Increment

Resource control elements
(RCEs)

HIRCE 15 15

Resource link elements (RLEs) HIRLE 15 15

Deadlock prevention elements
(DPEs)

HIDPE 15 15

Chapter 9. Statistics 9-25

9.6 Histograms

 9.6.5 Line histograms

Collection of line histograms is optional. Line histograms collect information for each
DC/UCF line defined at system generation time. Reports can be written at a site to
extract line histogram information.

To collect line histograms, use the system generation SYSTEM statement:

SYSTEM version-number

 .

 .

 .

 STATISTICS LINE

The keyword STATISTICS controls statistics collection, and the keyword LINE
enables collection of line histograms.

Line histogram classes: The table below displays line histogram classes. Bins
for the LINETIME class are built based on the low value and increment for the class.
Default values are shown in this table. By default, ten bins are maintained for
LINETIME.

* Expressed in units of ten-thousandths of a second

Description Class name Low value Increment

Cumulative response time per
line

LINETIME 50* 50*

9.6.6 Overriding histogram defaults

You can override the default low value, range increment, and number of bins for each
histogram class. To do this:

1. Code a #HSTDEF macro for each histogram class whose defaults are to be
overridden.

2. Create an RHDCHIST load module from the assembled #HSTDEF macros.

3. Optionally link edit the RHDCHIST load module that you name at link-edit time
with the main startup module (RHDCNTRY).

If RHDCHIST is not link edited with RHDCNTRY, DC/UCF loads the
RHDCHIST module during DC/UCF startup.

9-26 CA-IDMS System Operations

9.6 Histograms

9.6.6.1 Coding #HSTDEF macros

This section presents #HSTDEF macro syntax and parameters, followed by two
examples.

#HSTDEF macro syntax

��── #HSTDEF histogram-class ───�

 �─┬──────────────────────────────────────┬───────────────────────────────────�

└─ ,LOW= ─┬─ low-range-value-number ─┬─┘

└─ 1 ← ────────────────────┘

 �─┬───────────────────────────────────────┬──────────────────────────────────�

└─ ,INCR= ─┬─ range-increment-number ─┬─┘

└─ 2 ← ────────────────────┘

 �─┬──────────────────────────┬───�

└─ ,BINS= ─┬─ bin-count ─┬─┘

└─ 1� ← ──────┘

 �─┬─────────────────┬──��

└─ ,LINE=line-id ─┘

Note that defaults for the #HSTDEF macro do not necessarily coincide with defaults
for a given histogram class (for example, LINETIME has a default low value of 50).

 #HSTDEF parameters

histogram-class
Names the histogram class (for example, PROGCALL or LINETIME) whose
defaults are to be overridden.

Valid histogram class names are given in the discussions of system-wide, task, and
task histograms earlier in this chapter.

LOW
Specifies the low value for the histogram's value range. Low-range-value-number
must be a positive integer.

Considerations: Low values for classes USERTIME, SYSTIME, WAITTIME, and
LINETIME represent units of one ten-thousandth of a second.

INCR
Specifies the increment added to range values for successive bins.
Range-increment-number must be a positive integer.

Considerations: Range increments for classes USERTIME, SYSTIME,
WAITTIME, and LINETIME represent units of one ten-thousandth of a second.

BINS
Specifies the number of bins in the histogram. Bin-count must be a positive
integer less than or equal to 56.

Chapter 9. Statistics 9-27

9.6 Histograms

LINE
(LINETIME class) Specifies the line whose histogram quantities are being
overridden. Line-id-a is a line identifier specified at system generation time by a
LINE statement.

Considerations: If LINE is omitted, the #HSTDEF macro applies to all lines in
the DC/UCF system.

Examples: This example shows how to override defaults for statistics class
PROGSIZE:

#HSTDEF PROGSIZE,LOW=2�,INCR=2�,BINS=15

This example shows how to override line statistics (LINETIME) defaults for line
VTAM80:

#HSTDEF LINETIME,LOW=2,INCR=1��,BINS=12,LINE=VTAM8�

9.6.6.2 Creating the RHDCHIST module

To create the RHDCHIST module, assemble and link edit the #HSTDEF macros. To
do this, use the appropriate JCL or commands, as given below, for OS/390, VSE/ESA,
VM/ESA, and BS2000/OSD operating systems.

Notice that, if the resulting RHDCHIST module (or VSE/ESA phase) is to be link
edited with RHDCNTRY, be sure to name the RHDCHIST module in an INCLUDE
JCL statement or VM/ESA command when you link edit the RHDCNTRY module.

Note: The following JCL does not use SMP/E. For examples of how to apply a
modification to a CA-IDMS load library using SMP/E, see the SAMPJCL
library delivered with the CA-IDMS installation tape.

OS/390 RHDCHIST assembly and link edit

// EXEC ASMA9�

//ASM.SYSLIB DD DSN=idms.maclib,DISP=SHR

// DD DSN=sys1.maclib,DISP=SHR

//ASM.SYSIN DD �

 RHDCHIST CSECT

 #HSTDEF macros

 END

//LKED.SYSLMOD DD DSN=idms.loadlib,DISP=SHR

//LKED.SYSIN DD �

 NAME RHDCHIST(R)

Item Description

idms.loadlib data set name of the CA-IDMS load library

idms.maclib data set name of the CA-IDMS macro library

sys1.maclib data set name of the system macro library

9-28 CA-IDMS System Operations

9.6 Histograms

VSE/ESA RHDCHIST assembly and link edit

// DLBL idmslib,'idms.library',2�99/365,DA

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF �,SEARCH=(idmslib.sublib)

// LIBDEF PHASE,CATALOG=(idmslib.sublib)

// OPTION CATAL

 PHASE RHDCHIST

// EXEC ASMA9�

 RHDCHIST CSECT

 #HSTDEF macros

 END

/�

// EXEC LNKEDT

VM/ESA RHDCHIST assembly and link edit

GLOBAL MACLIB idmslib

FILEDEF TEXT DISK RHDCHIST TEXT A

ASSEMBLE hstdef (NODECK OBJECT

FILEDEF SYSLST PRINTER

FILEDEF SYSLMOD DISK idmslib LOADLIB a2 (RECFM V LRECL 1�24 BLKSIZE 1�24

LKED linkctl

Linkage editor control statements (linkctl):

INCLUDE RHDCHIST

NAME RHDCHIST(R)

Item Description

idmslib filename of the file containing CA-IDMS modules

idmslib.sublib name of the sublibrary within the library containing
CA-IDMS modules

idms.library file ID associated with the file containing CA-IDMS
modules

nnnnnn volume serial number

ssss starting track (CKD) or block (FBA) of disk extent

Item Description

hstdef filename of the file containing the #HSTDEF macro
statements

idmslib filename of the CA-IDMS MACLIB library

idmslib LOADLIB a2 file identifier of the CA-IDMS LOADLIB library

linkctl filename of the file containing the linkage editor control
statements

Chapter 9. Statistics 9-29

9.6 Histograms

BS2000/OSD RHDCHIST assembly and link edit

/DELETE-SYSTEM-FILE SYSTEM-FILE=�OMF

/ADD-FILE-LINK ALTLIB,F-NAME=idms.maclib

/ASSIGN-SYSDTA TO=�SYSCMD

/START-ASSEMBH

//COMPILE SOURCE=�SYSDTA -

// ,MACRO-LIB=�LINK(ALTLIB) -

// ,COPY-LIB=�LINK(ALTLIB,MACRO-ONLY) -

// ,COMP-ACT=MOD-GEN(MODULE-FORMAT=OM) -

// ,MOD-LIB=�OMF -

// ,COMPILER-TERMINATION=(MAX-ERROR-NUMBER=�)

RHDCHIST CSECT

 #HSTDEF macros

 END

//END

/REM-FILE-LINK ALTLIB

/START-BINDER

//START-LLM-CREATION INTERNAL-NAME=RHDCHIST

//INC-MOD LIB=�OMF

//SAVE-LLM LIB=idms.dba.loadlib,ELEM=RHDCHIST(VER=@),OVER=YES

//END

Item Description

idms.dba.loadlib filename of the CA-IDMS load library containing the
DMCL and database name table load modules

idms.maclib filename of the CA-IDMS macro library

9-30 CA-IDMS System Operations

9.7 User-written statistics support

9.7 User-written statistics support

DC/UCF provides user exits that allow the user to gain control at selected points in the
statistics-writing process. These exits can be used, for example, to accumulate
statistics of special interest in a separate file or to take a specified action in response to
a statistical value.

The statistics user exits are:

�� For more information about user exits, see Chapter 7, “User Exits.”

User exit Function

IDMSSVCX (SVC exit) Called at external request unit signon. Used to
extract job card information.

Exit 5 (task termination exit I) Called whenever a task terminates, before task
statistics (if any) are written.

Exit 6 (task termination exit II) Called whenever a task terminates, after task
statistics (if any) are written.

Exit 9 (system statistics exit) Called whenever system-wide statistics are to be
written, before they are written.

Exit 15 (VIB statistics exit) Called whenever system and/or task statistics are
written to the variable information block (VIB).
The exit is called after the statistics are written,
but before the VIB is released.

Exit 31 (transaction statistics
exit)

Called whenever system and/or task statistics are
written from the transaction block. The exit is
called after the statistics are written but before the
transaction block is freed.

Chapter 9. Statistics 9-31

9.8 Examining statistics

 9.8 Examining statistics

You can examine statistical information both before and after it is written to the
DC/UCF log. For example:

■ Current execution can be traced by examining statistics as they occur, before they
are written to the log.

■ Specific run-time events can be evaluated by examining logged statistics.

■ Run-time trends can be traced by examining logged statistics.

The following pages present information on examining current run-time statistics and
logged statistics.

9.8.1 Current run-time statistics

You can use any of the following methods to examine statistical information that is not
yet written to the system log:

■ DCMT commands — Provide online summaries of statistics currently contained in
active control blocks

■ OPER task — Permits dynamic monitoring of various statistics currently contained
in active control blocks

�� DCMT commands and the OPER task are described in CA-IDMS System Tasks and
Operator Commands.

 9.8.2 Logged statistics

DC/UCF provides utilities for use when the system log file is assigned to the database
(that is, the DDLDCLOG area).

If the log is not assigned to the database, use the appropriate operating system utility
to examine the system log. For example, use IEBGENER for OS/390 systems, DITTO
for VSE/ESA systems, or the COPYFILE command for VM/ESA systems.

Use the following methods to examine logged statistics:

■ The PRINT LOG utility statement prints the current contents of the system log
file, including statistics written to the file.

■ The ARCHIVE LOG utility statement archive the system log file and reports on
the contents of the archived log.

�� For information on how to execute the print log utility, see CA-IDMS Utilities.

■ Statistics reports (SREPORTs) summarize data contained in the archived system
log file. The table below lists the available SREPORTs:

�� For details on SREPORTs, see CA-IDMS Reports.

9-32 CA-IDMS System Operations

9.8 Examining statistics

Module Category Statistics report title

000 Start-up Records Read (required with remaining
modules)

001 Histogram IDMS Statistics Histogram Report (system and
task)

003 System DC System Statistics

005 Task DC Task Statistics by User ID

006 Task DC Task Statistics by Lterm ID

007 Task DC Task Statistics by Task Code

008 Task DC ERUS Task Statistics by Accounting Data

009 Task DC ERUS Task Statistics by Program Name

010 Transaction DC Transaction Statistics by User ID

011 Transaction DC Transaction Statistics by Lterm ID

012 System DC Task Summary

013 System DC Program Summary

014 System DC Queue Summary

015 System DC Line Summary

016 System DC Physical Terminal Summary

017 Record Summary of Records Read

018 CA-ADS ADS/OnLine Statistics by User ID

019 CA-ADS ADS/OnLine Statistics by Dialog and Version
Number

020 CA-ADS ADS/OnLine Statistics by Logical Terminal ID

021 Transaction DC Transaction Statistics by Dialog

099 No listing (creates an output file of archive
statistics records)

Chapter 9. Statistics 9-33

9-34 CA-IDMS System Operations

 Chapter 10. System Performance

10.1 Overview . 10-3
10.2 Abend detection and timed functions . 10-4

10.2.1 Run-time events that cause abends 10-4
10.2.2 Mechanisms that detect abnormal processing 10-4

10.3 Database operations . 10-6
10.4 Deadlock detector performance management 10-7
10.5 Program loading . 10-8

10.5.1 General strategies . 10-8
10.5.2 Defining load lists . 10-9

10.6 Program pools . 10-11
10.6.1 Types of program pool . 10-11
10.6.2 Run-time performance considerations 10-11

10.7 Resource management . 10-14
10.7.1 Task resource and deadlock management 10-14
10.7.2 Resource limits . 10-14

10.8 System run units . 10-17
10.9 External request units . 10-19
10.10 Storage pools . 10-21

10.10.1 Contents of storage pools . 10-21
10.10.2 How the system allocates storage in storage pools 10-22
10.10.3 Run-time performance considerations 10-23

10.11 Tasks . 10-25
10.12 Terminal exception response protocol 10-26

Chapter 10. System Performance 10-1

10-2 CA-IDMS System Operations

10.1 Overview

 10.1 Overview

DC/UCF system performance largely depends on site-specific factors. Factors such as
the system environment (both hardware and software), the number of systems running
concurrently, and the type of work being done by each system make it difficult to
prescribe any single method of system tuning.

However, system performance problems generally are the result of resources not being
available as required at run time. This chapter discusses performance issues that you
can address by adjusting parameters specified at system generation time.

To monitor performance trends, you can use DC/UCF statistics and histograms, as
described in Chapter 9, “Statistics.” You can display current performance information
at run time by using DCMT commands and the OPER task. To view the contents of
the system log, you can use the OLP system task.

�� For information about using DCMT, OPER, and OLP, see CA-IDMS System Tasks
and Operator Commands.

This chapter discusses the following performance topics:

■ Abend detection and timed functions

 ■ Database operations

■ Deadlock detector performance management

 ■ Program loading

 ■ Program pools

 ■ Resource management

■ System run units

■ External request units

 ■ Storage pools

 ■ Tasks

■ Terminal exception response protocol

Chapter 10. System Performance 10-3

10.2 Abend detection and timed functions

10.2 Abend detection and timed functions

System performance can be improved if abended transactions, loops, and other
abnormal processing conditions are detected promptly by DC/UCF. As soon as
DC/UCF detects a problem, it can terminate the transaction and free resources held for
the associated task. This way, these system resources become available to other tasks,
reducing potential competition for the resources.

The following pages discuss:

■ Run-time events that cause abends

■ Mechanisms that detect abends, loops, and other abnormal processing conditions

10.2.1 Run-time events that cause abends

A task abends when any of the following events occur at run time:

■ The application program issues an ABEND or encounters a program check. The
task also abends when a write-to-log command that occurs on behalf of the
program has a severity code sufficient to cause an abend.

■ An authorized user enters:

– A DCMT VARY ACTIVE TASK TERMINATE command

– An OPER CANCEL command

■ A CICS application program abend is detected by IDMSTRUE, causing
IDMSINTC to abort the associated transaction.

10.2.2 Mechanisms that detect abnormal processing

You establish various mechanisms to detect abends, loops, and other problems at
system generation. The table below lists parameters of interest. Unless otherwise
noted, the parameter appears on the SYSTEM statement.

Another SYSTEM statement parameter, ABEND STORAGE, defines extra storage for
the system to use when processing abends.

�� For details on all of these system generation parameters, see CA-IDMS System
Generation.

Abend detection and timed function parameters: The table below summarizes
parameters you can specify at system generation to activate the related mechanism to
detect abnormal processing conditions:

10-4 CA-IDMS System Operations

10.2 Abend detection and timed functions

Parameter Description

CHKUSER TASKS (OS/390 and VSE/ESA systems) Specifies the number of
check-user tasks to be started by the DC/UCF system.
The system uses these tasks to detect abnormally
terminated external request units.

DEADLOCK
DETECTION
INTERVAL

Specifies the amount of time that must elapse before the
deadlock detector searches for deadlocked tasks.

EXTERNAL WAIT Specifies the amount of time that can elapse between
database requests from an external request unit before
DC/UCF assumes that the transaction has been
terminated.

INACTIVE INTERVAL Specifies the amount of time that an online task is
allowed to wait for a resource before DC/UCF
abnormally terminates the task.

INTERNAL WAIT Specifies the amount of time that a system run unit is
allowed to wait for a resource before DC/UCF
abnormally terminates the run unit.

RESOURCE TIMEOUT
INTERVAL

Specifies the amount of time a terminal is permitted to
remain inactive before DC/UCF invokes the resource
timeout program.

RUNAWAY INTERVAL Specifies the amount of time that an online or ERUS
task is allowed to execute without returning control to
the DC/UCF system.

TICKER INTERVAL Specifies how often DC/UCF checks for occurrences of
timer-related events (for example, EXTERNAL WAIT).

Chapter 10. System Performance 10-5

10.3 Database operations

 10.3 Database operations

This section presents system generation parameters for locking and journaling that
affect database performance.

�� For a complete discussion about locking and journaling, see the CA-IDMS Database
Administration.

 Locking

 Journaling

Sysgen parameter Description

LOCK LIMIT

(SYSTEM and TASK
statements)

Limits the total number of record locks that can be held
concurrently by specific types of transactions.

SYSLOCKS

(SYSTEM statement)

Specifies the maximum number of record locks that the
system can maintain concurrently for all transactions.

If this value is too low, the lock manager allocates
secondary blocks of lock storage out of the first
available storage pool. DC/UCF releases the storage
when it is no longer required; however, you may notice
an impact on overall system performance due to
unplanned demand on the storage pool and increased
CPU usage by the lock manager.

AREA ACQUISITION
THRESHOLD

(SYSTEM and TASK
statements)

Defines the point at which, during ready processing, the
system will begin to accumulate area locks for a
database transaction if the system is readying multiple
areas at the same time.

Sysgen parameter Description

JOURNAL FRAGMENT
NUMBER

(SYSTEM statement)

Defines an interval at which DC/UCF writes a dummy
journal record to the journal for the purpose of
improving warmstart performance.

JOURNAL
TRANSACTION LEVEL

(SYSTEM statement)

Defines the number of transactions over which DC/UCF
will defer writing the buffer to the journal in order to
produce fuller journal buffers and to decrease journal
I/O.

NOJOURNAL
RETRIEVAL

(SYSTEM statement)

Suppresses the writing of checkpoints for retrieval
transactions.

10-6 CA-IDMS System Operations

10.4 Deadlock detector performance management

10.4 Deadlock detector performance management

You can set the following parameter on the SYSTEM statement at system generation
to control the CA-IDMS deadlock manager:

DEADLOCK DETECTION INTERVAL

This parameter establishes a time interval for invoking the deadlock detector.

You can also set this value dynamically using the DCMT VARY DEADLOCK
command.

�� For more information, see CA-IDMS System Tasks and Operator Commands.

Monitoring deadlock performance: Chapter 9, “Statistics,” identifies the
deadlock statistics DC/UCF writes to the DDLDCLOG area when the system is shut
down. The table below identifies how to interpret those statistics:

Statistic Description

Total number of
deadlocks detected

The is the sum of the total number of COND=DEAD and
COND=NONE deadlocks. This value should be close to zero.
If a system is experiencing no deadlocks, you could set the
deadlock detection interval to a very high value (for example,
10 minutes) in order to reduce resource consumption by the
deadlock detector.

The ratio of tasks
processed in pass 1
to the number of
times the deadlock
detector was
dispatched

This ratio signifies the number of tasks that are potentially
deadlocks to the number of times a deadlock check was
performed.

The ratio should be at least greater than 1 and should be as
high as possible. You can increase the value of this statistic
by raising the detection interval value.

The ratio of tasks
processing in pass 2
to the total number
of deadlocks
encountered.

This ratio indicates how effective the deadlock detector
interval is because it indicates the average number of tasks
examined per deadlock.

This ratio should be greater than 1. In a system experiencing
few deadlocks, this ratio should be as high as possible. In a
system experiencing many deadlocks, this ratio should be
smaller (but still greater than 1). You can increase or decrease
the ratio by raising or lowering the deadlock detection interval.

Chapter 10. System Performance 10-7

10.5 Program loading

 10.5 Program loading

By improving program loading performance, you can reduce the amount of time and
the number of I/O operations required to load programs. The following information
about improving program loading performance is presented below:

■ General strategies to improve performance

■ Defining load lists to tailor the search path used when loading programs

 10.5.1 General strategies

To enhance DC/UCF program loading performance, use the following strategies, as
appropriate at your site:

■ Tailor the block size specified for the DDLDCLOD and DDLCATLOD load areas
and for load (core-image) libraries based on the typical size of programs in the
area or library and on the device type.

Because programs are loaded one block at a time, this strategy can help reduce the
amount of I/O required to load programs. For example, assume that program X is
about 200K bytes in size. If the block size is 1K, 200 I/O operations will be
required to load the program. If the block size is 20K, 10 I/Os will be required to
load program X.

■ Evaluate programs for loading efficiency. For example, you may reduce the
number of loads required for a program if you use internal subroutines rather than
external subroutines.

■ Define frequently used programs at system generation time. For example, define
frequently used subschemas, DML programs, maps, and CA-ADS dialogs. Assign
the NODYNAMIC parameter to production programs defined at system generation
time. This parameter prevents users from defining additional versions of the
program at run time.

Note: If you define CA-ADS dialogs at system generation, storage usage below
the line will increase.

Be sure to define at system generation time only those programs that you expect
to execute on a regular basis. Infrequently used programs can be defined at
system run time.

■ Define subschemas for a production environment at system generation time, using
the following additional strategies:

– Put subschemas in the CDMSLIB load (core-image) library. Put the
dictionary network subschema (for example, IDMSNWKA) at the front of the
CDMSLIB concatenation.

– Exclude SUBSCHEMA from the UNDEFINED PROGRAM COUNT clause
in the system generation SYSTEM statement. This causes the system to skip
the overhead associated with using null PDEs when subschemas are loaded.

10-8 CA-IDMS System Operations

10.5 Program loading

■ At sites with operating systems that support extended addressing, use XA program
pools or XA reentrant pools to increase the amount of pool space available at run
time.

�� For more information, see Chapter 8, “Extended Addressing and Multitasking.”

■ Predefine load area run units to handle program loading operations for the primary
dictionary. You also can predefine load run units for secondary dictionaries. For
more information about predefined run units, see 10.8, “System run units” on
page 10-17.

■ Clear out the data dictionary DDLDCLOD area by using the CLOD task. This
strategy applies only at sites where the DC/UCF system remains running for long
periods of time. The CLOD task is executed automatically by DC/UCF at startup
time.

■ Reduce the search path required to load frequently used programs. You have the
option to define alternate search paths, called load lists. More information about
load lists is presented below.

10.5.2 Defining load lists

A load list defines the search path that DC/UCF uses to locate and load programs for
execution at run time. For compatibility with Release 10.2, DC/UCF provides the
SYSLOAD load list shown below:

ADD LOADLIST SYSLOAD

DICTNAME IS USER-DEFAULT VERSION IS USER-DEFAULT

DICTNAME IS SYSTEM-DEFAULT VERSION IS USER-DEFAULT

LOADLIB IS USER-DEFAULT

DICTNAME IS USER-DEFAULT VERSION IS 1

DICTNAME IS SYSTEM-DEFAULT VERSION IS 1

LOADLIB IS SYSTEM-DEFAULT

Customized load lists: A production system should not use the SYSLOAD load
list. For performance reasons, create a customized load list that contains the minimum
number of entries required to support the production environment. For example, you
can create a load list that includes only the load area and load libraries appropriate for
a given application.

A site defines load lists at DC/UCF system generation time by using the LOADLIST
statement. When you define a load list, you specify:

■ The dictionaries and load libraries that are to be searched

■ The order in which dictionaries and load libraries are to be searched

Specifying the run time load list: You specify the load list to be used at run
time in either of the following ways:

■ At system generation time, specify which load list is to be used by the system by
including the LOADLIST parameter in the SYSTEM statement. This load list is
the system default load list.

Chapter 10. System Performance 10-9

10.5 Program loading

■ At run time, specify the load list to be used for your current terminal session by
using the DCUF SET LOADLIST command. The load list specified in this way
is the terminal session default load list.

�� Details on system generation specifications are given in CA-IDMS System
Generation.

Details about DCUF commands are given in CA-IDMS System Tasks and Operator
Commands.

How DC/UCF uses load lists: DC/UCF selects the location from which a program
is loaded based on:

1. Criteria specified on the #LOAD statement. If a dictionary name is specified on
the #LOAD statement, DC/UCF loads the program from that dictionary.

2. The current load list. If a terminal session default load list has been specified by
using a DCUF SET LOADLIST command, DC/UCF searches dictionaries and
load libraries in the specified order.

3. The system default load list. DC/UCF searches dictionaries and load libraries in
the order specified in the system default load list when both of the following are
true:

■ No dictionary name is specified on the #LOAD statement.

■ No terminal session default load list has been specified by using a DCUF SET
LOADLIST command.

�� More information on load lists is given in CA-IDMS System Generation.

10-10 CA-IDMS System Operations

10.6 Program pools

 10.6 Program pools

A program pool is an area of storage in the DC/UCF region. The size of each
program pool determines the amount of storage available to the DC/UCF system for
loading programs, including:

 ■ CA-ADS dialogs

 ■ Database procedures

■ Edit and code tables

 ■ Maps

 ■ Programs

 ■ Subschemas

10.6.1 Types of program pool

You can define each of the following types of program pools at DC/UCF system
generation time:

■ 24-bit program pool (required)

■ 24-bit reentrant pool (optional)

■ 31-bit program pool (optional)

■ 31-bit reentrant pool (optional)

The 31-bit pools are available only for operating systems that support extended
addressing.

�� For details about defining program pools, see CA-IDMS System Generation.

10.6.2 Run-time performance considerations

When program pool usage is tight, you can:

■ Change the pools in which programs are loaded

■ Increase the size of program pools

Changing the pools: To reduce the number of programs loaded in to the 24-bit
program pool, you can:

■ Define a reentrant pool and then define programs as reentrant. A program can be
defined as reentrant when it conforms to both of the following conditions:

– The program executes in a reentrant manner. In general, it is a good idea to
verify that programs defined as reentrant really execute in a reentrant manner.

Notice that quasi-reentrant COBOL programs cannot be loaded in to the
reentrant pool. COBOL II programs can be written in a reentrant manner and

Chapter 10. System Performance 10-11

10.6 Program pools

loaded in the reentrant pool. More information about COBOL and COBOL II
can be found in CA-IDMS DML Reference - COBOL.

– The program is defined as reentrant by the system generation PROGRAM
statement, DCMT VARY DYNAMIC PROGRAM command, or the
CA-IDMS compiler that defines it.

When a program is defined as reentrant and a reentrant pool exists, the program is
always loaded in the reentrant pool. If there is no reentrant pool, reentrant
programs are loaded in to the program pool.

■ Define programs as resident. Resident programs are loaded at DC/UCF startup
time and remain loaded for the duration of DC/UCF system execution. You
declare a program resident by using the system generation PROGRAM statement.

These programs are loaded at the beginning of the program pools immediately
after the nucleus modules.

■ At XA sites, define 31-bit program pools. You can define both a 31-bit program
pool and a 31-bit reentrant pool. When 31-bit pools are defined, DC/UCF
attempts to load in to the appropriate 31-bit pool:

– All programs created by the CA-IDMS compilers (that is, programs in the
DDLDCLOD area of the data dictionary)

– All programs with a residency mode (RMODE) of ANY, including COBOL II
programs

If a 31-bit pool does not have enough space, DC/UCF loads the program in to the
corresponding 24-bit pool. For more information on XA 31-bit pools, see
Chapter 8, “Extended Addressing and Multitasking.”

Increasing the size of program pools: Increasing the size of program pools can
help you deal with problems such as the following:

■ Active programs are being overlaid by other programs in a given pool. This is
typically the first indication that you need to increase the pool size.

■ You experience waits for program pool space.

■ The number of waits for reentrant pool space is high.

Reentrant programs are loaded in the 24-bit program pool if the 24-bit reentrant
pool is full.

Monitoring program pool usage: The table below lists ways that you can
monitor program pool usage.

�� For more information about DCMT and OPER commands, see CA-IDMS System
Tasks and Operator Commands.

10-12 CA-IDMS System Operations

10.6 Program pools

Option Description

Online system monitor
(OPER)

The following OPER command provides online
information about program pool usage:

OPER WATCH PR

DCMT commands The following DCMT commands provide program pool
usage information:

■ DCMT DISPLAY ACTIVE PROGRAMS

■ DCMT DISPLAY ACTIVE REENTRANT
PROGRAMS

■ DCMT DISPLAY ACTIVE XA PROGRAMS

■ DCMT DISPLAY ACTIVE XA REENTRANT
PROGRAMS

■ DCMT DISPLAY ALL PROGRAM POOLS

Chapter 10. System Performance 10-13

10.7 Resource management

 10.7 Resource management

Fine tuning how DC/UCF controls resources can improve and speed task execution.
The following topics are discussed below:

■ Fine tuning task resource usage and deadlock management

■ Fine tuning resource limits for tasks

10.7.1 Task resource and deadlock management

A task is the basic unit of work under DC/UCF. A task consists of the execution of
one or more programs.

DC/UCF manages task resources by using resource control elements (RCEs), resource
link elements (RLEs), and deadlock prevention elements (DPEs). At system
generation time, you specify how many of each element can be allocated at run time.
At run time, the system uses these preallocated elements to track task resources usage.

�� For information about how you define RCEs, RLEs, and DPEs, see CA-IDMS
System Generation. For more information about task performance, see 10.11, “Tasks”
on page 10-25.

If the TIMES THRESHOLD EXCEEDED system statistic for RCEs, RLEs, or DPEs is
high at your site, you can improve system performance by allocating more of the
indicated element. It can be especially useful to examine trends in your system's use
of DPEs. If an increasing number of DPEs is used at run time, contention for
resources is increasing.

 10.7.2 Resource limits

You define resource limits to specify the maximum amount of specific resources a
given task can use at run time. The table below lists the system generation parameters
that you use to define and enforce resource limits.

�� For information about system generation parameters, see CA-IDMS System
Generation. For information about DCMT LIMITS commands that you can use to
control resource limits at run time, see CA-IDMS System Tasks and Operator
Commands.

Resource limit considerations: When specifying resource limits, keep in mind
that:

■ Limits on task resource usage can be enforced only when task statistics are being
collected.

■ User exit 20 can be used to handle situations when task resource limits are
exceeded. For example, user exit 20 can continue the task or abend it, examine
other limits, or write messages to the system log.

10-14 CA-IDMS System Operations

10.7 Resource management

�� For details on user exit 20, see Chapter 7, “User Exits.”

■ The MAXIMUM CONCURRENT THREADS parameter of the system generation
TASK statement can be used to control the number of threads that can be active
concurrently for a given task code. This limit is particularly appropriate for tasks
that consume large amounts of system resources.

At run time, you can override this specification by using the DCMT VARY TASK
command.

■ The SYSLOCKS parameter of the system generation SYSTEM statement and the
AREA ACQUISITION THRESHOLD parameter of the SYSTEM or TASK
statement affect task usage of record locks. However, implementing explicit limits
for record locks as described in the table below provides more control over this
resource. This is because user exit 20 is called based only on resource limit
violations.

Parameters used to set task resource limits: The table below identifies
parameters you can use to establish task resource usage limits. You establish the
limits at system generation time. You can change limit specifications at run time by
using DCMT commands.

�� For information about setting limits for external request units, see 10.9, “External
request units” on page 10-19.

Parameter Description

CALL/DBIO/LOCKS/
STORAGE LIMIT

For online and/or for ERUS tasks, defines limits
for:

(SYSTEM statement) �1� ■ System service calls

■ Database I/O operations

 ■ Record locks

 ■ Storage

At run time, you can override these limits:

■ For online tasks, by using the DCMT VARY
TASK command

■ For ERUS tasks, by using the DCMT VARY
DATABASE PROGRAM command

LIMITS FOR ONLINE Enforces the limits defined for online tasks in the
above parameter.

Chapter 10. System Performance 10-15

10.7 Resource management

Parameter Description

(SYSTEM statement) At run time, you can override this specification by
using the DCMT VARY LIMITS command.

Note:
�1�- CALL/DBIO/LOCKS/STORAGE LIMIT also is a parameter of the system
generation TASK statement. You can use the TASK statement to override limits for
online and ERUS tasks.

10-16 CA-IDMS System Operations

10.8 System run units

10.8 System run units

A system run unit is a database transaction initiated by the DC/UCF system as part of
providing a standard service such as writing a message. You can predefine system run
units for the following types of processing:

The number of predefined run units of a given type that are available at run time is
determined:

■ At system generation time by the parameters listed in the table below.

�� For more information about these parameters, see CA-IDMS System Generation.

■ At run time by the DCMT VARY RUN UNITS command. This command allows
authorized users to increase or decrease the number of predefined run units for the
system based on usage throughout the day.

Performance considerations: Adjusting the number of predefined run units
defined for your system can improve system performance. The following performance
considerations apply:

■ When an insufficient number of run units is predefined, the system will need to
bind additional run units of the given type at run time. These additional overflow
run units cause additional overhead activity to occur. For example, one BIND and
one FINISH must be performed for each of these overflow run units.

■ When an excess number of predefined run units is available, storage pool space is
wasted until the IDLE INTERVAL expires, causing DC/UCF to shut down the
predefined run units. Note that the default IDLE INTERVAL on the RUNUNITS
system generation statement is OFF; therefore, be sure to code an explicit IDLE
INTERVAL when you generate the system.

Tip: If the number of overflow run units is greater than 1, add another predefined run
unit of the appropriate type with an IDLE INTERVAL specified.

Predefined run unit parameters

Type of run unit Area accessed

Signon DDLSEC area

Destination DDLDML area of the system dictionary

Message SYSMSG.DDLDCMSG area

Program loading DDLDCLOD or DDLCATLOD areas

Queue DDLDCRUN area

Security processing DDLDML area of the system dictionary or DDLCAT area
of an application dictionary

Chapter 10. System Performance 10-17

10.8 System run units

Parameter Description

RUNUNITS FOR
LOADER

(SYSTEM statement)

Predefines run units for the system default dictionary
load area (DDLDCLOD)

RUNUNITS FOR
MSGDICT

(SYSTEM statement)

Predefines run units for the dictionary message area
(DDLDCMSG)

RUNUNITS FOR
QUEUE

(SYSTEM statement)

Predefines run units for the system queue area
(DDLDCRUN)

RUNUNITS FOR
SECURITY

(SYSTEM statement)

Predefines run units for performing security checking
against system-level resources (DDLSEC area)

RUNUNITS FOR
SIGNON

(SYSTEM statement)

Predefines run units for signon processing in the user
catalog

RUNUNITS FOR
SYSTEM/DEST

(SYSTEM statement)

Predefines run units for CLIST and destination
processing

RUNUNITS FOR
LOADER

(RUNUNITS statement)

Predefines run units for loading from the DDLDCLOD
and DDLCATLOD dictionary load areas

RUNUNITS FOR SQL
LOADER

(RUNUNITS statement)

Predefines run units for loading SQL access modules
when using the SQL option

RUNUNITS FOR SQL
SECURITY

(RUNUNITS statement)

Predefines run units for performing security checking
against SQL-related objects, such as tables, access
modules, and SQL-defined schemas

10-18 CA-IDMS System Operations

10.9 External request units

10.9 External request units

An external request unit is an online task initiated within a DC/UCF system to service
database requests from an external user session.

An external request unit is initiated when a request for database services originates
from:

■ A batch application

■ Another DC/UCF system (using either DC-to-DC communications through an
SVC or DDS)

■ Another TP monitor such as CICS.

All concurrent database transactions initiated by one user session and processed on the
same back-end DC/UCF system are managed as a single external request unit. All
database requests issued as part of the external request unit are serviced by the same
back-end task.

An external request unit may have the following runtime characteristics:

■ Limits defined for system service calls, database I/O operations, CPU time, record
locks, storage usage, and active time limit

■ Inactive and external wait times

■ Area acquisition threshold and retry counts

 ■ Dispatching priority

An external request unit acquires these characteristics by having a corresponding task
defined to the DC/UCF system. The corresponding task defines the characteristics
listed above. Once DC/UCF finds the corresponding task for the external request unit,
it assigns the characteristics of the corresponding task to the external request unit.

Corresponding task: DC/UCF identifies the corresponding task for an external
request unit using the following search strategy:

1. It searches the TASK table for a task code that is specific to the front-end
application:

■ For batch applications, the name of the main program of the job step is used
as the task code. For example, IDMSDMLC is used ask the task code when
running a COBOL precompile step.

■ For CICS applications, the CICS transaction code is used as the task code.

■ For DC/UCF applications, the DC/UCF front-end task code is used as the
back-end task code.

2. If no matching task code was found in step 1, it searches the TASK table for a
task code corresponding to the front end system ID, which may be one of the
following:

Chapter 10. System Performance 10-19

10.9 External request units

■ BATCBULK — for batch applications

■ xxxxBULK — for CICS applications, where xxxx is system-name in the
TPNAME parameter of the IDMSINTC macro

■ DCXXBULK — for DC/UCF applications

3. If still no match is found, it uses task code RHDCNP3S.

Alternate task codes: Task codes that are defined to specify the runtime
characteristics of external request units are called alternate task codes. You define an
alternate task code in the same way as task codes for online applications such as IDD.

Although the program name in the task definition of an alternate task is ignored by the
runtime system, you must specify a program name to complete the task definition. For
consistency, it is recommended that you specify RHDCNP3S as the program invoked
by the task.

10-20 CA-IDMS System Operations

10.10 Storage pools

 10.10 Storage pools

A storage pool is an area of storage in the DC/UCF region. Storage pools are used by
the system and by programs executing under the system to acquire space for work
areas and control blocks.

You can define from 1 through 256 storage pools for a DC/UCF system:

■ Storage pool 0 (required) is the primary (system) storage pool. This pool is
located in 24-bit address space.

■ Storage pools 1 through 127 (optional) are secondary storage pools located in
24-bit address space.

■ Storage pool 255 (optional) is the primary (system) storage pool located in 31-bit
address space.

■ Storage pools 128 through 254 (optional) are secondary storage pools located in
31-bit address space.

�� For information about how to define storage pools, see CA-IDMS System
Generation.

10.10.1 Contents of storage pools

Storage pools can contain various types of storage allocations, including those
described below:

Storage pool Contents

Any storage pool ■ COBOL working storage chapters

■ Program variable storage

 ■ Currency blocks

■ The external service element (ESE) and external
request elements (EREs) (VSE/ESA and VM/ESA)

■ Packet-data-movement buffers (VSE/ESA and
VM/ESA)

■ User trace buffers

■ Variable portions of dialogs

■ CA-ADS primary and secondary pool allocations

■ Variable portions of subschema tables

Chapter 10. System Performance 10-21

10.10 Storage pools

Assigning XA storage pools: DC/UCF assigns XA storage for each storage type
using the following strategy:

1. It allocates storage from a pool for a given storage type. If the pool is full, it uses
another XA pool of the same type. If another XA pool of the same storage type
is not available, it uses the non-XA pool for the same type of storage.

2. If no XA storage pools were defined for a storage type, it uses the non-XA pool
for the same type of storage. If the pool is full, it uses another non-XA pool of
the same type.

Note: Storage pool 0 acts as an XA overflow pool only for those types of storage for
which no non-XA storage pool is defined. For example, a system is generated
with these storage pools:

255 Contains SYSTEM storage only

129 TYPE DB

128 TYPE USER, USER-KEPT, SHARED, SHARED-KEPT

1 TYPE USER

0 Can contain all types of storage, except USER storage

Storage pool Contents

Primary pools 0 and 255 These pools additionally can contain:

 ■ DMCL-defined buffers

■ Storage for overflow system run units when all
predefined run units are already in use

 ■ Currency blocks

■ Primary and secondary allocations for record lock
tables

■ Secondary allocations of null program definition
elements (PDEs)

10.10.2 How the system allocates storage in storage pools

Storage is always allocated in 128-byte blocks. When attempting to allocate blocks of
storage, the system uses two strategies to find the required number of blocks of
storage. When the storage is found, it is allocated. The strategies are:

Scan 1 Looks at the most recent storage request for a compatible type of storage.
If it exists, sees if the required number of blocks is available, right behind
the end or before the start of the storage. Compatibility of storage is
determined as follows:

■ If storage protection is OFF at the system level, all storage types are
compatible.

10-22 CA-IDMS System Operations

10.10 Storage pools

■ If storage protection is ON at the system level, storage types
DATABASE and SYSTEM (SYSTCE and SYSCSA) are incompatible
with storage types USER and USER-KEPT. Storage types SHARED
and SHARED-KEPT are always incompatible.

Scan 1 is performed only if the requested amount of storage is 32K or
less.

Scan 2 Searches the appropriate storage pools linearly to find the rquired number
of blocks of storage. To spread the allocation of each type of storage
among the eligible pools, the system rotates the pool that is searched first
for space.

You can isolate types of storage so that storage pool 0 is never used for user storage.
More information about this strategy is given under Run-time performance
considerations in the next section.

10.10.3 Run-time performance considerations

To make storage pool usage more efficient, you can:

■ Define a storage cushion for one or more storage pools (except storage pool 255).
If statistics report SREPORT 003 reports that a pool's storage cushion is being
used, increase the size of storage pools by using the system generation SYSTEM
statement.

■ Adjust how CA-ADS uses storage by defining a fast-mode threshold and a
relocatable threshold at system generation time. At run time, authorized users can
alter the relocatable threshold by using the DCMT VARY STORAGE POOL
command.

�� For information about how to use DCMT commands, see CA-IDMS System
Tasks and Operator Commands.

You can direct the CA-ADS run-time system to calculate the amount of storage
required for record buffer blocks (RBB). RBB compression is enabled in the
system generation ADSO statement. At run time, the DCMT VARY ADSO
command alters RBB compression status.

■ Separate user program storage from storage used only by the system This keeps
the system from stalling if user programs consume excess storage. To define
pools for user program storage, use the STORAGE POOL and XA STORAGE
POOL statements.

Typical storage pool related problems: Typical problems related to storage
pools are listed in the table below. In general, to reduce demand on storage pool
usage, first determine whether needless or excessive storage allocations are being
made. Use system generation parameters to adjust storage allocations whenever
possible.

�� For more information about storage pools and how to define them, see CA-IDMS
System Generation.

Chapter 10. System Performance 10-23

10.10 Storage pools

Monitoring storage pool usage: The table below lists ways that you can monitor
storage pool usage.

�� For information about DCMT and OPER commands, see CA-IDMS System Tasks
and Operator Commands.

Maximizing system availability: To maximize system availability, keep an OPER
task running at all times. If you explicitly define a 24-bit storage pool to contain all
user storage types, you can then use this OPER task to monitor and control the system,
even if the system goes short-on-storage.

Condition Possible action

The non-XA primary storage
pool (0) is short on storage
(SOS).

You may need to increase the size of the storage
pool or define additional pools.

The size of storage pool 0 as displayed by the
system generation compiler differs from the
run-time size because:

■ The system generation compiler adjusts the
run-time size of storage pool 0. See "DC/UCF
Concepts" in the CA-IDMS System Generation
manual for more information.

■ At startup, the system adds the amount it uses
for DMCL-related control blocks.

Short-on-storage conditions
occur often in any pool.

You may need to increase the size of the storage
pool.

Option Description

Online system
monitor (OPER)

The following OPER commands provide online information
on storage pool usage at run time:

■ OPER WATCH SP

■ OPER WATCH STORAGE

DCMT command The following DCMT commands provide storage pool usage
information:

■ DCMT DISPLAY ACTIVE STORAGE

■ DCMT DISPLAY ALL STORAGE POOLS

10-24 CA-IDMS System Operations

10.11 Tasks

 10.11 Tasks

The maximum number of tasks that can be executed at any given time is determined
by system generation parameters.

�� For details, see information about tasks presented in CA-IDMS System Generation.

You can use DCMT commands, OPER screens and the CA-IDMS/Performance
Monitor to determine how efficiently tasks execute on your system. When your
system frequently attempts to execute more than the maximum number of concurrent
tasks, you may need to tune your system. Keep in mind the following considerations:

■ When you significantly modify your system, be sure to monitor system
performance and tune the system accordingly. For example, you may need to
increase the maximum number of tasks for your system if you increase processing
resources or when you install a new CA-IDMS release.

■ Eliminating resource bottlenecks generally improves task performance. This
strategy often is the best way to reduce maximum task overflow situations.
Determine the resources for which active tasks frequently wait, keeping in mind
the information provided in 10.7, “Resource management” on page 10-14.

■ Evaluate all available options before increasing the number of tasks that the
system can execute. Increasing the number of tasks is not always an appropriate
strategy.

For example, increasing the maximum number of tasks can reduce throughput
because of CA-IDMS overhead when managing longer task and resource chains.
The more active tasks, the greater the contention for data that those tasks
reference. This can lead to increased deadlocks. The following considerations
apply:

– The maximum number of tasks that can execute concurrently is limited by the
actual amount of system storage and CPU resources available to CA-IDMS.

– CA-IDMS does not dispatch new tasks when it encounters a shortage of
resources. The maximum number of tasks for your system, therefore, is
limited by the resources that are available (for example, RCEs, RLEs, DPEs,
and the availability of a storage cushion).

– Restricting the maximum number of tasks a system can execute can be an
effective strategy to control your system during peak processing times. This
way, your system will not attempt to execute more tasks than your hardware
configuration can reasonably service.

Chapter 10. System Performance 10-25

10.12 Terminal exception response protocol

10.12 Terminal exception response protocol

Users can reduce I/O overhead significantly by assigning VTAM exception response
protocol to certain tasks or lines. Exception response protocol reduces CPU time
because terminals are not required to respond with a completion status when a terminal
write is requested from the DC/UCF system.

You enable exception response protocol at system generation for specific lines and
tasks. To do this, you use the system generation LINE and TASK statements.

�� For details on the statements, see CA-IDMS System Generation.

Considerations: The following considerations apply when using VTAM exception
response protocol:

■ If exception response protocol is specified for a task, that task runs with exception
response protocol.

■ If exception response protocol is specified for a line, all tasks performed on that
line run with exception response protocol.

■ If the terminal sends any error notification, DC reports it on the next user request.

■ Printers always use definite response protocol so that buffers can be saved if print
errors occur.

10-26 CA-IDMS System Operations

Chapter 11. The System Log

11.1 Overview . 11-3
11.2 Maintaining the system log . 11-4

11.2.1 Database log (DDLDCLOG area) 11-4
11.2.2 Sequential log files . 11-5

11.3 Accessing logged information . 11-7
11.4 How the system logs errors . 11-8

Chapter 11. The System Log 11-1

11-2 CA-IDMS System Operations

11.1 Overview

 11.1 Overview

The DC/UCF system log records information on system activities. A separate journal
is used to record database activities.

��For more information on journal files, see CA-IDMS Database Administration.

The system log contains the following types of information about DC/UCF system
operations:

 ■ Abends

 ■ Cancellations

 ■ Messages

 ■ Normal shutdowns

■ Snap dumps (for abends)

 ■ Startups

 ■ Statistics

 ■ Trace records

■ Transaction and task starts

 ■ Warmstarts

Messages are sent to the log when they have a destination of LOG. A snap dump is
sent to the log for an actual or assumed abend in a transaction or task.

��For information about statistics in the system log, see CA-IDMS Reports.

Defining the system log: You define the system log at system generation time, by
using the LOG parameter of the SYSTEM statement. The SYSTEM statement is
described in CA-IDMS System Generation. You can define the system log in:

■ The database, by assigning the log to the DDLDCLOG area of the data dictionary

■ Sequential files, by assigning the log to one or more sequential files

You name sequential log files for a system in the JCL or commands that you use to
start up the system, as discussed in Chapter 2, “System Startup.” Under VSE/ESA,
you also must define sequential log files by using the #DVFILE macro discussed in
Chapter 3, “Setting Up Interpartition Communication and the SVC.”

About this chapter: This chapter discusses:

■ How you maintain the system log

■ How you access information in the system log

■ How the system logs run-time errors

Chapter 11. The System Log 11-3

11.2 Maintaining the system log

11.2 Maintaining the system log

The way you maintain the system log depends on the log assignment. Strategies are
discussed below for the database log area of the data dictionary and for sequential log
files.

11.2.1 Database log (DDLDCLOG area)

DC/UCF makes it easy to maintain the database log (DDLDCLOG) area so that it
doesn't become full. During run time, you maintain the log by:

1. Monitoring the amount of available space that remains in the log

2. Archiving (offloading) the log before it becomes full

When the system log in the DDLDCLOG area becomes full, the DC/UCF system halts
execution and waits for system operators to offload the DDLDCLOG area.

Monitoring available log space: Available space in the system log can be
monitored:

■ Automatically by the system — At run time, DC/UCF monitors the amount of
available unused space in the DDLDCLOG area. Each time the amount of
available space in the log halves, DC/UCF sends a message to the operator's
console. This message indicates the percentage of used space in the log area.

■ Selectively by users — Authorized users can monitor the percentage of used
space in the log area by using either of the following commands:

– DCMT DISPLAY LOG

– DISPLAY LOG (console operator command)

Archiving the log: You use the ARCHIVE LOG utility statement to archive the
system log. You can use the PRINT LOG utility statement to format reports of the
active log file. Details on these utilities are given in CA-IDMS Utilities.

You can archive (offload) the DDLDCLOG area:

■ While the DC/UCF system is active. In this case, the system halts execution and
waits for the log to be offloaded, unless the log is temporarily reassigned to a
sequential file.

■ At system shutdown. It is not mandatory to offload a partially full log at
shutdown. At system startup, DC/UCF begins writing to the unused portion of the
log area.

You can use the WTOEXIT user exit to automatically submit an ARCHIVE LOG
utility statement that archives the log area before the log becomes full.

��For information on the WTOEXIT user exit, see Chapter 7, “User Exits.”

11-4 CA-IDMS System Operations

11.2 Maintaining the system log

11.2.2 Sequential log files

Sites that assign the system log to one or more sequential files need to develop a
strategy for maintaining log files.

This is particularly true when you need to save the contents of sequential disk log
files. Considerations that apply to sequential disk files are presented below, followed
by considerations that apply to print and tape sequential log file assignments.

Considerations for disk log files: You can assign the system log to either a
single sequential file or to two alternate sequential files. At system startup time, the
DC/UCF system writes to the beginning of the first (or only) log file.

Your strategy for maintaining log files depends on the actions that DC/UCF takes
when the current log file becomes full, as discussed in the table below.

You archive sequential log files by using the appropriate operating system utility. For
example:

■ OS/390 — You can use IEBGENER.

■ VSE/ESA — You can use DITTO.

■ VM/ESA — You can use the COPYFILE command.

■ BS2000/OSD — You can use ARCHIVE or PERCON.

Maintaining sequential disk files: The appropriate strategy for maintaining and
archiving sequential disk log files depends on whether you log to single or alternate
log files, as summarized below:

Sequential disk log Considerations

Single File To save log records, you print or archive the log file when
you shut down the system.

When the log file becomes full at system run time,
DC/UCF wraps around to the beginning of the full log file
and writes over old log records.

Alternate Files To save the contents of a full log file, offload the file
immediately. You can do this while the system logs to the
alternate log file. �1�

When the alternate log file becomes full, DC/UCF will
switch back to the beginning of the old log file.

Note:
�1� - Under BS2000/OSD, the file is cataloged under a new name made up from the
old name, the Julian date, and the current time as shown:

name.dddhhmmss

Chapter 11. The System Log 11-5

11.2 Maintaining the system log

DC/UCF opens the other alternate log file using the old name. If PRTLOG=YES was
specified in the #DCPARM macro, DC/UCF initiates a PRINT of the old cataloged log
file.

Considerations for other log files: You can assign the system log to a print
device under OS/390 and VSE/ESA. Additionally, you can assign the system log to a
tape device under VSE/ESA by assigning the log SYSLST to the tape device in
system-startup JCL statements. Considerations that apply to these log file assignments
under OS/390 and VSE/ESA appear below:

Operating system Log file considerations

OS/390 When the log is assigned to a print device, the log is not
output until the system is shut down.

VSE/ESA When the log is assigned to a print or tape device by
means of SYSLST, the log normally is not output until the
system is shut down.

When the log is assigned to a specific print device, the log
file can be printed while the system is active:

■ When logging to a single file, DC/UCF closes the
active log file when it is full and then immediately
reopens the file.

■ When logging to alternate files, DC/UCF logs to the
alternate file automatically when the first log file is
full. To save the old file's contents, print the contents
of the log file immediately.

11-6 CA-IDMS System Operations

11.3 Accessing logged information

11.3 Accessing logged information

If you are logging to sequential files, you access logged information from the printed
or archived log. For more information, see 11.2.2, “Sequential log files” on
page 11-5.

If you are logging to the database (the DDLDCLOG area), you can access either
archived or online log information as described below:

��For more information about OLP, see CA-IDMS System Tasks and Operator
Commands.

For more information about PRINT LOG, see CA-IDMS Utilities.

For more information about SREPORTs, see CA-IDMS Reports.

Method Usage

OLP (online PLOG) Displays online the current contents of the log. This
utility accesses the current, unarchived log in the
DDLDCLOG area.

PRINT LOG utility
statement

Prints reports about all or selected parts of the current or
archived log.

Statistics reports
(SREPORTs)

Creates specific reports from the archived DDLDCLOG
area.

Chapter 11. The System Log 11-7

11.4 How the system logs errors

11.4 How the system logs errors

DC/UCF reports on errors by recording in the system log messages, snap photos, snap
dumps, system trace records, and information about DCMT commands issued at run
time.

A message is written to the log if the message destination specifies LOG. A snap
photo contains a list of tasks that were active when the snap photo was requested,
along with information about the resources held by the tasks.

A snap dump records the contents of memory at a particular time, such as when an
abend occurs. System trace records are written if the system trace facility is enabled
for DC/UCF by the SYSTRACE parameter of the system generation SYSTEM
statement.

DCMT commands entered by users are recorded in the log. System administrators can
use the #CTABGEN macro to keep all but significant DCMT commands from being
sent to the log.

��For more information about the #CTABGEN macro, see CA-IDMS Security
Administration.

DC/UCF also records errors by writing to the operator's console and/or to a user
terminal messages issued by the system and by application programs at run time, as
specified in the message definitions.

Messages provided along with CA-IDMS software are described in CA-IDMS
Messages and Codes. Explanations for these messages can be reviewed online by
means of the DCMT DISPLAY MESSAGE command.

��For information about how to use DCMT commands, see CA-IDMS System Tasks
and Operator Commands.

Additional error information: Additional information on errors is written to the
system log in the following situations:

 ■ Deadlock situations.

 ■ Timeouts.

■ #FREESTG violations. These occur when a task issues a #FREESTG request for
storage that has been violated (either by the issuing task or by another task). In
this case, DC/UCF snaps the violated storage.

The snap dump written to the log includes additional bytes of storage from the
immediately preceding and immediately following areas. The message following
the snapped storage indicates the starting address of the requested storage.

■ Abend conditions. When a task is abended and an abend control element (ACE)
exists for the abend, the ACE is written to the log. The ACE includes:

11-8 CA-IDMS System Operations

11.4 How the system logs errors

– The program status word (PSW) at the time of the abend; used to determine
the point in the program at which the abend occurred. If the ACE does not
contain a PSW, the ACE is written to the log without a PSW.

 – Interrupt code.

– Data at the PSW.

– Next instruction address.

– Contents of registers.

DCMT SNAP: DCMT SNAP commands control the writing of snap dumps and snap
photos to the DC/UCF log file.

��For information about how to use DCMT commands, see CA-IDMS System Tasks
and Operator Commands.

For details about how to read dumps issued for tasks, see the CA-IDMS Navigational
DML Programming.

Chapter 11. The System Log 11-9

11-10 CA-IDMS System Operations

Chapter 12. Applying Optional Functionality

12.1 Overview . 12-3
12.2 Creating an RHDCOPTF module . 12-4

12.2.1 #DEFOPTF macro . 12-4
12.2.2 Example . 12-4

Chapter 12. Applying Optional Functionality 12-1

12-2 CA-IDMS System Operations

12.1 Overview

 12.1 Overview

In past releases, optional functionality was made available through the use of optional
APARs. Now optional functionality can be applied and removed more easily as well
as preserved across maintenance updates.

Optional APARs can be divided into two categories:

Type 1 Those that do not need to change any specific values within CA-IDMS.
They can be activated by setting one bit in an optional functionality
bitmap table The bitmap table is generated in a new RHDCOPTF module
that is loaded during startup processing and anchored in the CSA.

Note: The SAMPJCL library delivered on each installation tape (Base,
APAR, or Maintenance) contains an updated table listing all of the
current RHDCOPTF bits that are available. The cover letter
accompanying each tape provides information for locating the
correct member.

Type 2 Those that either must set a specific value within CA-IDMS or affect the
startup in a very early phase: they are applied as program modifications.

Note: The SAMPJCL library delivered on each installation tape contains
the most recent version of the optional APAR source applicable for
the corresponding installed release of CA-IDMS. The cover letter
that accompanies each installation tape provides the member name
in SAMPJCL that contains the latest APAR source. It is important
that you use the most recent source because it may have been
updated since the prior installation tape.

Chapter 12. Applying Optional Functionality 12-3

12.2 Creating an RHDCOPTF module

12.2 Creating an RHDCOPTF module

To create a new RHDCOPTF module, assemble and link a RHDCOPTF source
module that contains #DEFOPTF macros that will activate optional functionality.

 12.2.1 #DEFOPTF macro

The #DEFOPTF defines which optional functionality is activated. It accepts two
parameters:

■ One is positional and can be an internal function number, in the form OPTnnnnn,
or a list of internal function numbers, allowing functions to be grouped by subject
or module in one macro. An internal function number will be associated with
each optional function that can be activated this way.

■ The second parameter is the TYPE=keyword that can get the value DEFINE,
which is the default, or GENERATE, in the last input macro.

The last #DEFOPTF macro has to contain the TYPE=GENERATE parameter in order
to generate the code.

 12.2.2 Example

TITLE 'User optional bitmap table'

#DEFOPTF OPT����2

#DEFOPTF OPT���1�,OPT���11

#DEFOPTF (OPT���2�,OPT���21,OPT���22)

#DEFOPTF TYPE=GENERATE

12-4 CA-IDMS System Operations

Chapter 13. CA-IDMS in a Sysplex Environment

13.1 Using Shared Cache . 13-3
13.1.1 Overview . 13-3
13.1.2 About shared cache . 13-3
13.1.3 Deciding to use shared cache . 13-6
13.1.4 Implementing shared cache . 13-7

13.1.4.1 Defining shared cache to the Coupling Facility 13-7
13.1.4.2 Defining shared cache in CA-IDMS 13-7

13.1.5 Monitoring shared cache . 13-8
13.1.6 Tuning a shared cache . 13-8

13.1.6.1 What you can do . 13-8
13.2 Using Dynamic Database Session Routing 13-10

13.2.1 Overview . 13-10
13.2.2 About dynamic database session routing 13-10
13.2.3 Planning to use dynamic database session routing 13-11
13.2.4 Implementing dynamic database session routing 13-11

13.2.4.1 Using DBGroups . 13-12
13.2.4.2 Back-end CV definitions . 13-12
13.2.4.3 Front-end CV definitions . 13-13
13.2.4.4 How dynamic database session routing works 13-13
13.2.4.5 Coupling Facility considerations 13-15
13.2.4.6 Application considerations . 13-15

13.2.5 Managing dynamic database session routing 13-16
13.2.6 Monitoring and tuning dynamic database session routing 13-17

13.3 Data Sharing . 13-19
13.3.1 Overview . 13-19
13.3.2 Data sharing groups . 13-19
13.3.3 Designing Data Sharing Groups . 13-19

13.3.3.1 Types of Groups . 13-20
13.3.3.2 Data Sharing Group Versus DBGroup 13-22

13.3.4 Defining Data Sharing Groups . 13-23
13.3.4.1 Selecting a Group Name . 13-23
13.3.4.2 Configuring the Coupling Facility 13-23
13.3.4.3 Specifying Group Membership 13-27

13.3.5 Sharing Update Access to Data . 13-28
13.3.5.1 Shared Area Requirements . 13-28
13.3.5.2 Notify Locking Considerations 13-29
13.3.5.3 Enabling Data Sharing . 13-29
13.3.5.4 Altering the DMCL Definition 13-29

13.3.6 Member Failure . 13-31
13.3.7 Coupling Facility Failures . 13-31
13.3.8 Group Restart . 13-33
13.3.9 Accessing Unrecovered Data . 13-34
13.3.10 Sharing Queues and Enqueued Resources 13-34

13.3.10.1 Sharing Queues . 13-34
13.3.10.2 Sharing Enqueued Resources 13-36

13.3.11 Monitoring Data Sharing Groups 13-37
13.3.11.1 Monitoring Through DCMT Commands 13-37

Chapter 13. CA-IDMS in a Sysplex Environment 13-1

13.3.11.2 Monitoring Through Performance Monitor 13-39
13.3.11.3 Monitoring Through Journal Reports 13-39

13.4 CV Cloning . 13-40
13.4.1 Overview . 13-40
13.4.2 About CV cloning . 13-40
13.4.3 Planning CV cloning . 13-40
13.4.4 Implementing CV cloning . 13-40

13.4.4.1 System definition requirements 13-40
13.4.4.2 Special file requirements for CV clones 13-41
13.4.4.3 System start up JCL requirements 13-41
13.4.4.4 Using CV clones with dynamic database session routing 13-42
13.4.4.5 Using CV clones with data sharing 13-42

13-2 CA-IDMS System Operations

13.1 Using Shared Cache

13.1 Using Shared Cache

 13.1.1 Overview

CA-IDMS exploits Coupling Facility technology by allowing multiple central versions
(CVs) running in a Sysplex environment to share database buffers for one or more
files using a shared cache. Each CV continues to maintain its own local copy of the
buffers. CA-IDMS maintains data consistency in the shared cache and across CVs and
databases. Using Coupling Facility technology, data is accessed using less overhead
than would otherwise be incurred doing a direct I/O to disk.

This chapter describes how CA-IDMS supports and manages a shared cache and how
to implement a shared cache in your CA-IDMS systems running in a Sysplex
environment.

13.1.2 About shared cache

You can run CA-IDMS systems in a Sysplex environment for the purpose of sharing
current data in database buffers across multiple CVs running in a Sysplex. Buffers are
shared across CVs using a shared cache in a Coupling Facility.

What is a shared cache: A shared cache is basically a large, high-speed buffer in
a Coupling Facility. It contains database pages from files assigned to the cache and
accessed by the CVs running in a Sysplex.

Because a Coupling Facility can provide high-speed access to systems to which it is
connected, accessing data from a shared cache is faster and uses less overhead than
would otherwise be used doing a direct I/O to disk.

How shared cache works: CA-IDMS manages one or more cache structures that
contain the actual data and are used to manage the updates made to pages in the cache.

CA-IDMS connects to a cache structure the first time a file assigned to it is opened.
Disconnecting from a cache structure happens only at shutdown or as a result of an
explicit DCMT VARY SHARED CACHE .. OFF command.

Here is how update and retrieval access to the shared cache and local buffers works at
run time:

■ When an update CV writes a page to disk, it also updates the page in the shared
cache. This causes invalidation of that page in all other CVs that ever read the
page. The illustration below shows how an update CV updates a shared cache and
invalidates the updated page in all CV buffers in which it exists.

Chapter 13. CA-IDMS in a Sysplex Environment 13-3

13.1 Using Shared Cache

■ When a CV needs to access a database page and shared cache is turned on for a
file, a current copy of a page is obtained by performing one or more of the
following:

– If the page in the local buffer is still valid, it is retrieved.

– If the page is not in the local buffer or is no longer valid, the CV looks for it
in the shared cache.

– If the page is found in the shared cache, it is retrieved.

– If it is not found in the shared cache, it is read from disk and placed in both
the shared cache and the local buffer.

Benefits: Using a shared cache in a Sysplex environment offers these benefits:

■ Multiple CVs can share database buffers — CVs look for data in the shared
cache before doing an I/O to disk.

■ Shared buffers contain current data — Using a buffer invalidation mechanism,
the operating system informs the CV that a database page has been updated. This
causes the CV to access a newer copy of the page the next time it is requested
from either the shared cache or disk.

■ The number of I/O operations to disk is reduced — Because access to data in
the Coupling Facility uses high-speed fiber optic links, accessing pages from the
shared cache greatly reduces the overhead that would be incurred by doing an I/O
to disk.

XA storage and shared cache: All control blocks related to shared cache are
allocated from XA opsys storage. This means that storage pools are unaffected.

The amount of storage needed depends on:

■ the number of shared caches

■ the size of the shared caches

13-4 CA-IDMS System Operations

13.1 Using Shared Cache

■ the database page size of the areas put in shared cache

■ the load on the central version

Two formulas can be used to compute an approximation of the amount of storage that
is used:

■ MAXCONC * MAXPGSZ

■ RNDUP(RNDUP(cache-size/MEANPGSZ) / 818) * 16K

Formula 1 is global for the central version and independent of the number of shared
caches in use. Formula 2 gives an approximation of the amount of storage needed for
a given shared cache.

The parameters in these formulas have the following meaning:

Example: The central version has 37 user maxtask and uses two shared caches:

■ CACHE1 has size 20000 K and is used by three areas (area1, area2 and area3).

■ CACHE2 has size 10000 K and is used by area4.

The areas contain the following number of pages:

■ area1 contains 500000 pages, each 2932 bytes

■ area2 contains 200000 pages, each 8192 bytes

■ area3 contains 100000 pages, each 4000 bytes

■ area4 contains 400000 pages, each 4276 bytes

Parameter Description

RNDUP A function that rounds a value up to the next
higher integer.

cache-size Size of the XES structure as allocated in the
Coupling Facility. If there is no space constraint
on the Coupling Facility, this matches the init-size
of the structure definition in the Sysplex couple
data set.

MEANPGSZ The mean cache page size in the cache structure,
rounded up to the next 256-byte boundary. Cache
page size is the area page size rounded up to the
next 256-byte boundary.

MAXCONC The maximum number of tasks concurrently
executing applications that use the shared cache.

MAXPGSZ The highest value of the cache page size of all
areas in the shared cache.

Chapter 13. CA-IDMS in a Sysplex Environment 13-5

13.1 Using Shared Cache

This is the MEANPGSZ for CACHE1 (assuming each page has the same chance of
getting accessed):

RNDUP(((5�3328 + 2�8192 + 1�4�96)/(5+2+1))/256) � 256 = 4864

This is the amount of storage used for CACHE1:

RNDUP(RNDUP((2�����1�24)/4864)/818)�16K = 96K

The MEANPGSZ for CACHE2 is:

RNDUP(4276/256)�256 = 4352

The amount of storage used for CACHE2 is:

RNDUP(RNDUP((1�����1�24)/4352)/818)�16K = 48K

The MAXPGSZ is:

MAXPGSZ = 8192

The amount of XA storage that this CV uses for shared cache is:

(37�8K) + 96K + 48K = 44�K

13.1.3 Deciding to use shared cache

Multiple CVs accessing same database: In general, a CA-IDMS environment
in which more than one CV requires access to the same database files can benefit from
using shared cache.

One CV can benefit: A single CV can also benefit from using shared cache. If the
CV is running on a machine with insufficient real memory to define large database
buffers, you can use a shared cache to define a large buffer and reduce the number of
I/Os to disk.

Shared cache used only by CVs: A shared cache is not accessible by
applications running in local mode; it is available only to CVs.

Using more than one shared cache: You can define more than one shared
cache in multiple Coupling Facilities to minimize possible contention. You can start
with one shared cache and monitor its use. If your monitoring operations reveal
contention for use of the cache, consider adding another cache. Here are some
considerations for defining more than one cache:

■ Assign frequently accessed files to a separate cache

■ Assign each database to a separate cache

��See 13.1.5, “Monitoring shared cache” on page 13-8 for information on monitoring
a shared cache.

13-6 CA-IDMS System Operations

13.1 Using Shared Cache

Dataspace caching: Dataspaces also provide a mechanism for caching database
pages for a file. However, dataspaces cannot be shared across multiple CVs. It is
recommended that you use only one caching mechanism for a file at a time (either
shared cache or dataspace).

13.1.4 Implementing shared cache

To use the shared cache feature, you need to perform the following tasks:

■ In the Coupling Facility,

– Define the name of each shared cache you'll use in CA-IDMS

 ■ In CA-IDMS:

– Identify the files that you want to assign to a shared cache

– Identify the name of the shared cache using a file override in the DMCL or
dynamically using the DCMT VARY FILE SHARED CACHE command

These tasks are described separately in the next sections.

13.1.4.1 Defining shared cache to the Coupling Facility

Estimating size of each shared cache: You must also define to the Coupling
Facility the size of each shared cache you'll implement in CA-IDMS. The estimate of
the size of a shared cache is based on the:

■ Number of files that you'll assign to the cache

■ Size of the files you'll assign to the cache

Estimating the size of a shared cache is dependent upon the applications that access it.
In general, it should be large enough to accommodate all frequently used pages of all
files in the cache. See the IBM document, MVS/ESA SP 5 Setting Up a SYSPLEX, for
more information on defining the size of a structure.

If a cache size is too small If the size of a shared cache is too small, the Coupling
Facility deletes the least recently used (LRU) page(s) when a new one must be added
to the cache. This results in extra CPU and disk I/O, which you want to avoid.

13.1.4.2 Defining shared cache in CA-IDMS

To implement shared cache in CA-IDMS, you need to assign the files that will
participate in a cache to a shared cache. You can assign a file to a shared cache by
specifying the name of a shared cache.

You implement shared cache for a CV through:

■ Definition in the DMCL. For more information, refer to CA-IDMS Database
Administration.

Chapter 13. CA-IDMS in a Sysplex Environment 13-7

13.1 Using Shared Cache

■ DCMT VARY AREA, DCMT VARY FILE, or DCMT VARY SEGMENT
commands. For more information, refer to CA-IDMS System Tasks and Operator
Commands.

13.1.5 Monitoring shared cache

You can use the following CA-IDMS tools to monitor the use of shared cache by an
executing CV:

■ DCMT DISPLAY commands. See CA-IDMS System Tasks and Operator
Commands.

■ CA-IDMS/Performance Monitor CA-IDMS Performance Monitor System
Administration.

■ CA-IDMS System Statistics Report. See CA-IDMS Reports.

You can also use monitoring tools for the Coupling Facility to monitor the global use
of a shared cache. See IBM Coupling Facility documentation for more information.

13.1.6 Tuning a shared cache

Tuning a shared cache involves monitoring its usage and, as necessary, modifying its
definition and implementation to use it as efficiently as possible.

13.1.6.1 What you can do

You can make the following changes to tune your use of shared cache:

■ Change the shared cache status for a file and either assign it to a new or existing
cache or drop it from participating in a shared cache

■ Define another shared cache and assign files to it

■ Increase the size of an existing cache

Changing the cache status for files: To change the shared cache status for a
file, use the DCMT VARY command for an AREA, FILE, or SEGMENT.

�� For more information on DCMT commands, use the DCMT HELP command or see
the CA-IDMS System Tasks and Operator Commands guide.

Defining multiple shared cache: As you monitor the use of a shared cache, you
may notice contention for it and may want to define another shared cache. For
example, if you find that the FND-IN-CACHE statistic is considerably lower than the
NUMBER-READS statistic for frequently accessed files in a cache, you might
consider defining another shared cache and assigning these files to it.

See 13.1.5, “Monitoring shared cache” for information on monitoring a shared cache.

13-8 CA-IDMS System Operations

13.1 Using Shared Cache

Increasing the size of a shared cache: If you determine that the size of a
shared cache is insufficient for your processing needs, you can increase the size of it.
Before you do this, be sure this is the right solution for your needs.

While you can increase the size of an existing cache, it requires that you perform the
following steps:

1. Issue a DCMT VARY SHARED CACHE cache-name OFF command for all CVs

2. Increase the size of the cache structure

3. Issue a DCMT VARY SHARED CACHE cache-name ON command for all CVs

Chapter 13. CA-IDMS in a Sysplex Environment 13-9

13.2 Using Dynamic Database Session Routing

13.2 Using Dynamic Database Session Routing

 13.2.1 Overview

You can use the dynamic database session routing feature to dynamically select the
node to which requests for data are sent. The selection is made by determining which
CV running in the Sysplex has the CPU cycles available to service the request.

You can also use the CV cloning feature to run cloned copies of the same CV. This
makes more CVs available to process database sessions.

Using these features, you can dynamically balance your CA-IDMS workload to
provide increased transaction throughput, better response time, and increased system
availability.

This chapter describes how to implement dynamic database session routing and create
cloned CVs in CA-IDMS systems running in a Sysplex environment.

13.2.2 About dynamic database session routing

The CA-IDMS client/server communications architecture for database sessions is
extended to allow a front-end CV to route a database session to a specific back-end
CV that has been identified, at run time, to have the CPU cycles available to service
the session.

In a non-Sysplex environment, the routing of database sessions is static; database
sessions are routed to an explicit, predetermined CV regardless of the availability of
processing cycles.

Benefits: Dynamic database session routing provides these benefits:

■ Dynamic workload balancing — Workload balancing is dynamic and based on
actual system load and resource availability; you don't need to predetermine
database routing to balance workloads across CVs to get maximum throughput and
shorter response time. Database sessions are routed to a CV with available
processing cycles.

■ Parallel processing of database sessions — Database sessions are processed in
parallel to reduce elapsed processing time.

■ Automatic routing of database sessions to an available CV — Database
sessions are routed to an available CV instead of being routed to the same system
whether its available or not.

■ Use with cloned CVs to make multiple copies of systems available — You can
implement dynamic database session routing with the cloned CV feature to start
and stop systems in response to changes in workloads to increase transaction
throughput and decrease response time.

13-10 CA-IDMS System Operations

13.2 Using Dynamic Database Session Routing

Use with CV cloning: This feature is designed to work in a Sysplex with the
dynamic routing of database sessions feature so that database sessions can be
dynamically routed to cloned copies of the same CV. For more information on
cloning CVs, see 13.4, “CV Cloning” on page 13-40. In order to dynamically route
update database sessions, back-end CVs must be members of a data sharing group.
For more information on data sharing, see 13.3, “Data Sharing” on page 13-19.

Use with shared cache: You can also use the dynamic database session routing
feature with the shared cache feature to share database buffers across multiple CVs to
minimize I/O operations to disk and to keep data current across the CVs running in a
Sysplex.

13.2.3 Planning to use dynamic database session routing

Dynamic routing of database sessions is designed to work with CA-IDMS
environments configured with the following minimum requirements:

■ CVs set up to process terminal and application services separate from database
services. This is accomplished by defining front-end CVs to process terminal
activities and other application-specific services, and back-end CVs to process
database requests. Using this configuration, front-end CVs can route database
requests to an available back-end CV where requests can then be serviced.

■ Back-end CVs set up as data sharing group members that have update access to
the database(s) used by the dynamically routed sessions.

■ Back-end CVs set up to process retrieval applications separate from update
applications. With this set up, multiple CVs can process retrieval requests for a
database while one designated CV can process update requests at the same time.
In that case, the front-end CVs must have the ability to identify database sessions
that perform only retrieval processing against a database. Typically you do this
for database run units by assigning a retrieval-only subschema to retrieval run
units. Since updates to an area can be performed by only one CV at a time when
not using data sharing, dynamic routing is restricted to retrieval database sessions.

If your current CA-IDMS environment is configured as described above, you need to
make only a few changes to use dynamic database session routing.

13.2.4 Implementing dynamic database session routing

To implement dynamic database session routing, you assign back-end CVs that service
database sessions to one or more DBGroups. At run time, database requests are routed
to a DBGroup to determine which CV in the DBGroup has the CPU cycles available
to process it. Once a CV volunteers to service a request, CA-IDMS sends the request
to it and it processes the request on the identified node.

Implementing dynamic database session routing, involves making changes to:

 ■ Back-end CVs

 ■ Front-end CVs

Chapter 13. CA-IDMS in a Sysplex Environment 13-11

13.2 Using Dynamic Database Session Routing

 ■ Coupling Facility

There are also considerations for applications that participate in dynamic database
session routing.

This section describes what you need to do in each of these areas to set up your
CA-IDMS environment to use dynamic database session routing, beginning with the
concept of a DBGroup and how it is used to implement dynamic database session
routing.

 13.2.4.1 Using DBGroups

What is a DBGroup A DBGroup contains one or more CVs. You assign CVs to
DBGroups based on the databases they service. At run time, a request for access to a
database is routed to a DBGroup, instead of a node. The DBGroup name is then
replaced with the node name for a CV assigned to it that volunteers (i.e. has the CPU
cycles) to service the request.

Planning DBGroups: Before you define any DBGroups, you need to plan how you
want to group CVs to meet your processing requirements. For example, create one
DBGroup for all back-end CVs, if all databases are accessible by all CVs.

13.2.4.2 Back-end CV definitions

Back-end CVs must be assigned to a DBGroup: To assign each back-end CV
to one or more DBGroups, you update its database name table and add a DBGROUP
statement for each DBGroup in which it participates. This makes the CV a member of
the specified DBGroup. You must assign all back-end CVs to all DBGroups in which
they participate. When each back-end CV is started, it is eligible to process dynamic
database sessions for the databases defined in its database name table.

Using cloned back-end CVs: To exploit the parallel processing and dynamic
workload balancing features of dynamic database session routing, you must have
enough back-end CVs available to process any run unit or SQL transaction that may
be dynamically routed to it. You can use the CV cloning feature, as discussed in
section 13.4, “CV Cloning” on page 13-40, to make multiple copies of CVs available.

Assigning back-end CVs to DBGroups: You use the CREATE DBGROUP
statement to assign a back-end CV to a DBGroup. To assign a back-end CV to
multiple DBGroups, include multiple CREATE DBGROUP statements. For a
complete description of these statements, see the CA-IDMS Database Administration
guide.

13-12 CA-IDMS System Operations

13.2 Using Dynamic Database Session Routing

13.2.4.3 Front-end CV definitions

In dynamic database session processing, front-end CVs route requests for database
services to DBGroups. To do this, it must know about the DBGroups to which it can
route requests. DBGroups are identified as nodes in a front-end CV's resource name
table using the system generation NODE statement.

Adding DBGroups to a resource name table: The resource name table for each
front-end CV must contain:

■ The name of each DBGroup to which it can route requests. The DBGroup name
is added as a node name on the system generation NODE statement with a type of
GROUP.

■ Optionally, for each back-end CV that can service requests for a DBGroup, a
NODE entry specifying the communication method to use to access it. Use the
system generation NODE statement to define the node by which a back-end CV is
accessed and the communication method used, if it is not already defined. If no
NODE entry is defined, the access method is chosen, as follows:

– If the two systems are executing on the same OS/390 image and their system
definitions specify the same SVC number, then the SVC access method is
used.

– If the back-end system has a VTAM line driver, then the VTAM access
method is used.

– If the back-end system has a CCI line driver, then the CCI access method is
used.

Note: Applications executing from CICS, batch, Windows, and any other non-
CA-IDMS/DC client must first be routed to an explicit CV (static routing),
which can then dynamically route it to a back-end CV for servicing.

Making enough front-end CVs available: You must have a sufficient number of
front-end CVs available to process the applications submitted by your users.

Using the NODE statement to identify DBGroups: You use the system
generation NODE statement to identify DBGroups in the resource name table for
front-end CVs. For a complete description of the NODE statement, see the CA-IDMS
System Generation.

13.2.4.4 How dynamic database session routing works

This section describes how a sample DBGroup is defined and used at run time.

In the following example, the EMPGROUP contains CVs IDMS060, IDMS070, and
IDMS080, which have update access to the EMPDB database. They are members of
data sharing group DSGROUP1. At run time, front-end CV IDMS050 can route
requests for the EMPGROUP to either IDMS060, IDMS070, or IDMS080, whichever
one volunteers. If neither IDMS060, IDMS070, nor IDMS080 are enabled members of
the EMPGROUP, then requests fail.

Chapter 13. CA-IDMS in a Sysplex Environment 13-13

13.2 Using Dynamic Database Session Routing

Modifying database name table: The following example illustrates how the
EMPGROUP DBGroup is defined to the existing system definitions for the IDMS060,
IDMS070, and IDMS080 back-end CVs and the IDMS050 front-end CV.

DBGroup definition in database name table for IDMS060

CREATE DBGROUP N6�TABLE.EMPGROUP

ENABLED;

GENERATE DBTABLE N6�TABLE;

DBGroup definition in database name table for IDMS070

CREATE DBGROUP N7�TABLE.EMPGROUP

ENABLED;

GENERATE DBTABLE N7�TABLE;

DBGroup definition in database name table for IDMS080

CREATE DBGROUP N8�TABLE.EMPGROUP

ENABLED;

GENERATE DBTABLE N8�TABLE;

Modifying resource name table:

MODIFY SYSTEM IDMS�5�.

ADD NODE EMPGROUP

GROUP DEFAULT NODE IDMS�8�.

GENERATE.

How EMPGROUP is used at run time: At run time, using either the resource
name table or user exit 23, requests for database services are identified to be serviced
by node EMPGROUP using an access type of GROUP.

13-14 CA-IDMS System Operations

13.2 Using Dynamic Database Session Routing

Note: Exit 23 may be used to override the specified node name on the bind.

The access type of GROUP directs CA-IDMS to solicit a back-end CV in the
EMPGROUP to service the database request. An available CV in the EMPGROUP
DBGroup volunteers to service the request. From this point on, processing takes place
as it normally does in CA-IDMS using the node name of the CV that volunteered to
service the database request. A list structure is used in the Coupling Facility to
determine which back-end CV is the volunteer.

13.2.4.5 Coupling Facility considerations

You need to define one Coupling Facility list structure for each DBGroup defined to
CA-IDMS with the name "CAIDMS" appended with the DBGroup name, for example,
CAIDMSEMPGROUP.

Sizing the list structure: Use the following formula for estimating the size of the
list structure:

Size = ROUND1M(TotTask � 365 + 256K)

where TotTask is the sum of (MAXIMUM TASKS + MAXIMUM ERUS) in the
SYSTEM statement for all front-end systems.

For example, suppose the EMPGROUP group is defined to three front-end CVs, and
each CV has its MAX TASKS parameter set to 40 and MAX ERUS 10. The size of
the list structure can be estimated as 1 megabyte (150 x 365 bytes + 256K, rounded up
to a 1 megabyte multiple).

See the IBM document, Setting up a SYSPLEX, for more information on defining the
size of list structures in the Coupling Facility.

 13.2.4.6 Application considerations

A database session is routed to a node using the DBNAME and NODENAME passed
on the BIND statement for run units and the dictionary name passed on the
CONNECT statement for SQL transactions. Dynamic database session routing is used
if the DBNAME or dictionary name maps to a node name in the resource name table
with a type of GROUP. You can tailor the node name at run time using the
user-written, pre-bind exit Exit 23 or using the VIA parameter on both the DBNAME
and the DESTINATION clauses of the RESOURCE TABLE system generation
statement.

Specifying DBGroup name on RESOURCE TABLE statement: You can map
a DBNAME or DESTINATION-NODE to a DBGroup name using the VIA parameter
on the RESOURCE TABLE syntax. Specify a DBGroup name as the nodename on
the VIA parameter to route the application to a DBGroup. In the example below, the
EMPDB DBNAME is routed to DBGroup EMPGROUP by specifying EMPGROUP as
the nodename. In this case, database requests from applications binding to EMPDB
are routed to the EMPGROUP to determine which CV assigned to it has the CPU

Chapter 13. CA-IDMS in a Sysplex Environment 13-15

13.2 Using Dynamic Database Session Routing

cycles available to process the request. The request is then directed to the node
associated with the CV that volunteered to service the request.

MODIFY SYSTEM IDMS�71

MODIFY RESOURCE TABLE

DBNAME IS EMPDB VIA EMPGROUP.

GENERATE.

Impact of long term database resources passed across run units: If there
are longterm database resources maintained for an application thread running on a
back-end CV, and subsequent BINDS or CONNECTS are issued from that application
to the same DBGroup, they are automatically routed to the same back-end CV. If
longterm resources are frequently held across database sessions within an application
thread, the overall effectiveness of the work load balancing is impacted.

Long term database resources are either database currencies saved by CA-ADS
applications or long term locks created by any KEEP LONGTERM database
commands. All other application resources are saved on the front-end CV and do not
impact the selection of the back-end CV for the database session.

Use of the NOSAVE option on DISPLAY, INVOKE, and LINK commands within a
CA-ADS application eliminate the saving of currency blocks across a pseudo converse
or non-extended run unit. If the NOSAVE option is used, each run unit in the
application thread can be dynamically routed (provided longterm locks are not used).
It does require that the application logic be in place to reestablish database currencies,
if necessary, when the next run unit is bound.

Retrieval and update run units in same application: If currencies or longterm
locks are passed from one run unit to another, then all such run units must be routed
to the same CV once a back-end CV has volunteered for the initial bind. CA-IDMS
will ensure this, provided they are routed to the same DBGroup. Also, if a
retrieval-only CA-ADS dialog passes currencies to an update dialog, then both must be
routed to the same DBGroup if dynamic routing is to be used. In this case, the
DBGroup back-end CVs must be part of a data sharing group.

13.2.5 Managing dynamic database session routing

You can manage a CV's participation dynamically using the DCMT VARY
DBGROUP command.

What you can do: You issue the DCMT VARY DBGROUP command to activate
and inactivate dynamic database session routing and to manage a CV's participation in
a DBGroup. The tasks you can perform are summarized in the table below.

13-16 CA-IDMS System Operations

13.2 Using Dynamic Database Session Routing

To do this Use these DCMT VARY DBGROUP
parameters

Enable and disable dynamic database
session routing on an executing front-end
CV

ACTIVE/INACTIVE

Join a CV to a DBGroup or disable it from
a DBGroup

JOIN/LEAVE

Activate dynamic database session routing
and enable the CV to participate in the
named DBGroup or inactivate dynamic
database session routing and disable the CV
from participating in the named DBGroup

ON/OFF

ON is the same as using the ACTIVE
and JOIN parameters.

OFF is the same as using the
INACTIVE and LEAVE parameters.

13.2.6 Monitoring and tuning dynamic database session routing

Using DCMT commands and the CA-IDMS/Performance Monitor, you can monitor
how database sessions are being serviced by dynamic database session routing, and as
appropriate, modify parameters to suit your processing needs.

The tools you can use are summarized in the table below.

Chapter 13. CA-IDMS in a Sysplex Environment 13-17

13.2 Using Dynamic Database Session Routing

Merging CA-IDMS statistics: If you use CA-IDMS statistics for job accounting
purposes, merge the statistics for all cloned systems prior to analyzing them. This
provides a global view of the actual resources used. For more information on CV
cloning, see 13.4, “CV Cloning” on page 13-40.

Tool Description

DCMT DISPLAY DBGROUP You can display statistics for all DBGroups to
which the currently executing CV can direct
requests or for a specific DBGroup. Statistics
include the number of active back-end CVs
assigned to DBGroups and the total number of
requests processed by each.

DCMT DISPLAY DBTABLE Lists each DBGroup defined in the table and its
status.

DCMT DISPLAY NODE Displays the name of each node with its associated
type.

DCMT VARY DBGROUP Allows you to vary the status of a DBGroup and
turn dynamic database session routing on and off.

LOOK DBTABLE (DC) Lists each DBGroup defined in the table and its
status.

IDMSLOOK DBTABLE
(batch)

Lists each DBGroup defined in the table and its
status.

Interval Monitor (online and
batch)

For each DBGroup, displays detailed statistics
(using DBGROUP category) and wait statistics
(using SUMMARY HISTORY, SUMMARY
DETAIL, and WAIT Screens).

13-18 CA-IDMS System Operations

13.3 Data Sharing

 13.3 Data Sharing

 13.3.1 Overview

By exploiting Coupling Facility technology, CA-IDMS allows the following features:

■ The ability for multiple CA-IDMS systems to update data concurrently

■ The ability to share queues and enqueue common resources across CA-IDMS
systems

■ The ability to broadcast system tasks to multiple CA-IDMS systems

Each of these new features depends on the implementation of a data sharing group that
individual CA-IDMS systems join as members. A data sharing group is a construct
that enables the implementation of the above features.

The rest of this chapter describes what a data sharing group is and how it is defined,
and gives details on each of the sysplex exploitation features it uses.

13.3.2 Data sharing groups

A data sharing group is a named collection of CA-IDMS systems within a sysplex.
Each CA-IDMS system that is associated with a data sharing group is referred to as a
member of that group. The name of the member becomes both the CA-IDMS system
name and the node name for that system. A system can be a member of only one data
sharing group at a time.

Data sharing groups allow you to:

■ Share update access to a database. See 13.3.5, “Sharing Update Access to Data”
on page 13-28 for more information.

■ Broadcast commands to all members of the group. For more information, refer to
CA-IDMS System Tasks and Operator Commands guide.

■ Share queues and enqueue common resources. See 13.3.10, “Sharing Queues and
Enqueued Resources” on page 13-34 for more information.

■ Monitor and report on all members of a data sharing group. See 13.3.11,
“Monitoring Data Sharing Groups” on page 13-37 for more information.

13.3.3 Designing Data Sharing Groups

The most significant benefit to a data sharing group is the ability for multiple
CA-IDMS systems to update the same data concurrently. Satisfying your data sharing
needs should therefore be the most significant consideration in designing your data
sharing groups.

Chapter 13. CA-IDMS in a Sysplex Environment 13-19

13.3 Data Sharing

13.3.3.1 Types of Groups

There are three basic types of groups: a homogeneous group, a heterogeneous group
and a hybrid group.

A homogeneous group is one in which all members are essentially the same. They
support the same applications, they access the same databases in the same way, and
they have the same security definitions. Members of a homogeneous group likely
share the same system definition, using the cloned system capability. Since every
member has access to the same resources, it doesn't matter on which member a given
transaction is executed.

In a heterogeneous group, every member is unique in terms of the applications that it
supports. Although some databases may be shared between members, other databases
are unique to a given member. Each member may have its own system and security
definitions. They are members of the same group in order to share update access to
data, but otherwise are distinct systems. A given transaction must be directed to a
particular member in order to ensure that it has access to the resources that it needs.

A hybrid group is one in which some members are clones of one another while other
members are not.

Homogeneous groups: A homogenous group can be thought of as a multi-part
IDMS system. Facilities such as shared update access to data and shared queues
enable applications to execute on any member of the group. The major benefits to this
type of group are:

■ The ability to adjust the number of members in response to changing workloads

■ Fault tolerance in the event of a failure

If a group is reaching capacity in terms of transaction volumes, then an additional
member can be started to handle some of the workload. Members might be added and
removed on a periodic basis (daily, monthly, etc.) Or members may be permanently
added as workload increases over time.

Homogeneous groups also provide fault tolerance in the event that a CA-IDMS system
or an OS/390 image fails. Other members of the group (which may be executing on
different OS/390 images) can continue to process applications, while recovery is taking
place.

The degree to which applications update the same records within the database will
determine the effectiveness of a homogeneous group. For example, if every
transaction must update a one-of-a-kind control record, there is a high degree of
contention for that record across members of the group. This significantly increases
the CPU overhead needed to process the transactions, since the members must
communicate with one another in order to resolve the contention. Furthermore, if a
CA-IDMS system fails while it holds an exclusive lock on the control record, then that
record remains locked until the failing system has been recovered, thus preventing
other transactions from accessing the record. If, on the other hand, transactions tend to

13-20 CA-IDMS System Operations

13.3 Data Sharing

access and update different records and pages in the database, with only the occasional
overlap, then a homogeneous group should perform well and provide increased fault
tolerance. In designing a homogeneous group, consider ways to segment the workload
to minimize cross-member contention for resources.

The following diagram illustrates a homogeneous data sharing group. It consists of
four members (CUST01, CUST02, CUST03, and CUST04), each of which share
update access to the same set of databases (Inventory, Customer and Financial).

Heterogeneous groups: A heterogeneous group provides the ability to share
update access to certain areas of the database from otherwise distinct CA-IDMS
systems. It eliminates the need for other solutions such as application-level replication
of updates or remote database access. It can alleviate the pressures of an increasing
workload, by allowing it to be split along application boundaries even though some
areas need to be commonly updated.

While contention for individual records and pages within shared areas may not be as
likely in a heterogeneous group, the degree to which such contention occurs affects
performance. This should be a consideration in determining how to split your
workload across members of a heterogeneous group.

Heterogeneous groups provide a degree of fault tolerance in that members that have
not failed continue to process transactions, some of which may update shared areas.
Of course there is no fault tolerance for the portion of the workload that was being
processed by the failed member.

The following diagram illustrates a heterogeneous group in which every member
accesses a distinct set of databases. Member CORP updates the Financial and HR
databases. Member CUST updates the Customer, Financial and Inventory databases.
Member INV updates the Inventory and Financial databases.

Chapter 13. CA-IDMS in a Sysplex Environment 13-21

13.3 Data Sharing

Hybrid groups: A hybrid group can provide the benefits of both homogeneous
groups and heterogeneous groups. It easily allows the addition of members to handle
increased workload and provide fault tolerance for certain applications while allowing
other members to continue processing different applications that have little contention
for shared databases.

The following diagram illustrates a hybrid group that is similar to the heterogeneous
group described above except that the CUST member is cloned so that two members
CUST01 and CUST02 service the same set of transactions.

13.3.3.2 Data Sharing Group Versus DBGroup

There is a difference between a data sharing group and a database or DBGroup. A
data sharing group provides the ability to share update access to data. A DBGroup
provides the ability to dynamically route database requests. At any one time, a
CA-IDMS system can be a member of several DBGroups but only one data sharing
group.

While it is possible that every member of a data sharing group also is a member of the
same DBGroups, this is not a requirement and in fact, is unlikely unless the data
sharing group is homogeneous. It would be more likely that members that are clones
of one another would be members of the same set of DBGroups, since they can
support the same types of transactions.

13-22 CA-IDMS System Operations

13.3 Data Sharing

It is also possible for a DBGroup to span data sharing groups. CA-IDMS systems that
are members of different data sharing groups or that are not members of any data
sharing group can belong to the same DBGroup. While such a scenario may be
unlikely, it highlights the fact that data sharing groups and DBGroups are technically
unrelated.

13.3.4 Defining Data Sharing Groups

There is no explicit definition for a data sharing group; however, before a CA-IDMS
system can become a member of a group, certain actions must be taken:

■ The number of XCF groups that can be created in the coupling facility may need
to be increased

■ The number of buffers used for XCF messaging may need to be increased

■ A list and lock structure must be defined to the coupling facility

■ Each CA-IDMS system that is to be a member of a group must be associated with
that group through its startup JCL

■ Print task codes defined through the #UCFUFT macro must have a corresponding
entry added to the LCLENQDQ module. This topic is discussed in 13.3.10,
“Sharing Queues and Enqueued Resources” on page 13-34.

■ If members of the group are to share update access to data, changes must be made
to the DMCLs of all group members. This topic is discussed in 13.3.5, “Sharing
Update Access to Data” on page 13-28.

13.3.4.1 Selecting a Group Name

A data sharing group internally corresponds to an XCF group whose name is that of
the data sharing group. The name of a data sharing group must be different from the
name of any other XCF group within the sysplex.

Group names may be 1-8 characters in length and consist of characters A-Z, 0-9, $, #
or @. Names that begin with SYS or UNDESIG are reserved and cannot be used.
Names that begin with A-I may be used by the operating system and should be
avoided. For more information refer to the appropriate IBM documentation.

13.3.4.2 Configuring the Coupling Facility

Each data sharing group internally uses an XCF group and requires the definition of a
list and a lock structure in the coupling facility. In addition, one or more cache
structures must be defined if the data sharing group is to share update access to data or
if shared buffering is to be used.

XCF group: XCF groups are not explicitly defined to the coupling facility, however
the maximum number of XCF groups that can be active is part of CFRM policy. This
maximum may need to be increased in order to implement a new data sharing group.

Chapter 13. CA-IDMS in a Sysplex Environment 13-23

13.3 Data Sharing

In addition, CA-IDMS uses XCF messaging to communicate between group members.
It may be necessary to increase the number of buffers available for XCF messaging in
order to accommodate the increased traffic. Refer to the appropriate IBM
documentation for more information.

CF structures: The following information must be specified when defining a
structure to the coupling facility:

 ■ Structure name

 ■ Structure size

List structure: The name of the list structure must be:

CAIDMSgroupnameLI

where groupname is the name of the data sharing group.

Use the following formula for estimating the size of the list structure:

Size = ROUND1M(SAREALS + SFILELS + QS�QUEUELS + QUIESLS + 256K)

where:

■ SAREALS is the size of the shared area list. Compute its size as follows:

– Compute for each shared area the area-element-size:

ROUND256(184 + number-of-files-in-area � 35) + 97

– Sum all area-element-sizes.

■ SFILELS is the size of the shared file list. Compute its size as follows:

– Compute for each shared file the file-element-size:

ROUND256(164 + number-of-areas-in-file � 6) + 97

– Sum all file-element-sizes.

■ QS = 1 if the queue area is shared; otherwise it is 0.

■ SQUEUELS is the size of the shared queue list. Compute its size as follows:

Number-of-shared-queues � 353

■ QUIESLS is the size of the quiesce list. It is used when a DCMT QUIESCE
command affects one or more shared areas. Its size is dependent on the number
of parallel outstanding requests. The size of an outstanding request can be
computed as follows:

ROUND256(92 + number-of-target-shared-areas � 6) + 97

Note: ROUND1M means rounding up to the next 1 megabyte multiple. ROUND256
means rounding up to the next 256-byte multiple. For example:

ROUND256(198) = 256

ROUND256(256) = 256

ROUND256(258) = 512

13-24 CA-IDMS System Operations

13.3 Data Sharing

The size of a list structure may be altered at any time using an operating system
command. The ability to increase the size of the list structure is limited by the
available space in the coupling facility. CA-IDMS does not allow rebuilding of the
list structure.

Lock structure: The name of the lock structure must be:

CAIDMSgroupnameLK

where groupname is the name of the data sharing group.

The minimum size of the lock structure depends on the number of concurrent locks
that are placed on records in shared areas.

A coupling facility lock structure contains two types of information: a lock table and
record data entries.

The lock table is used as a hash table for the purposes of detecting contention for a
resource. Its size is determined by the LOCK ENTRIES and the MEMBERS
parameters specified in the DMCL of data sharing group members. For more
information on these parameters, see 13.3.5.3, “Enabling Data Sharing” on page 13-29.

Record data entries are used to hold information about exclusive locks. Each
exclusive global lock on a transaction resource has a corresponding record data entry.
Applications that update many records before issuing a commit increase the
requirement for record data entries. If the system runs short of record data entries, it
reacts by releasing proxy locks that are not in use. This negatively impacts
performance. If, after taking this action, there are not enough record data entries
available to satisfy a lock request, the issuing task will fail. For more information on
transaction locking, refer to CA-IDMS Database Administration. For information on
monitoring the available record data entries in the lock structure, refer to 13.3.11,
“Monitoring Data Sharing Groups” on page 13-37.

The size of a lock structure, must be large enough to hold both the lock table and the
maximum number of record data entries that exist at one time. The first CA-IDMS
system that starts as a member of a data sharing group determines the size of the lock
table. If the lock structure is too small to accommodate the lock table, startup fails.
Once the lock table has been allocated, its size remains the same until all group
members have been shut down normally.

Whatever space remains in the lock structure after the lock table has been allocated is
used for record data entries. The amount of space in the lock structure can be
increased (or decreased), by using the SETXCF START ALTER command. The
ALTER command only affects the amount of space available for record data entries.
Task abends result when there is insufficient space to create a record data entry when
one is needed. The amount of available space in the lock structure can be monitored
by using the DCMT DISPLAY DATA SHARING command. For more information,
refer to 13.3.11, “Monitoring Data Sharing Groups” on page 13-37.

Chapter 13. CA-IDMS in a Sysplex Environment 13-25

13.3 Data Sharing

The minimum recommended lock structure size is 1,000k. This value may need to be
significantly increased if areas are to be shared for update access. Use the following
formula for estimating the size of the lock structure:

Size = LTE#�LTES + RD#�14� + 35K

where:

■ LTE# is the number of lock table entries

■ LTES is the lock table entry size as determined from the following table

■ RD# is the maximum number of record data entries needed

CA-IDMS does not allow rebuilding of the lock structure.

Cache structures: At least one cache structure is needed in order to share update
access to data or to enable shared buffering. Both of these capabilities require that
each affected CA-IDMS file be associated with a cache structure. You may associate
any number of files with a single cache or allocate a cache for each file.

The larger the cache structure, the more likely a page will remain in the cache,
eliminating a disk access when the page is next needed by a system. Ideally, each file
would be assigned to its own cache structure and that structure would be large enough
to hold the entire file. However, this may not be practical due to the amount of space
and the number of structures that would be needed. The more space that can be
assigned, the fewer disk accesses are needed and hence the better the performance.

The size of a cache structure may be altered at any time using the SETXCF START
ALTER command. The size may be increased, provided there is sufficient space in
the coupling facility.

There are no additional requirements for the name of a cache structure beyond those
imposed by the operating system.

CA-IDMS does not allow rebuilding of a cache structure.

Maximum Number of Members in
Data Sharing Group

Lock table entry size (LTES)

7 2

8-23 4

24-55 8

56-119 16

120-247 32

13-26 CA-IDMS System Operations

13.3 Data Sharing

13.3.4.3 Specifying Group Membership

Each CA-IDMS system that is to be a member of a data sharing group must specify
the name of the group and its membername in the SYSIDMS card image file in the
startup JCL.

 Syntax

��──── DSGROUP=group-name ───��

��──── DCNAME=member-name ───��

 Parameters

DSGROUP=group-name
Specifies the name of the data sharing group of which this system is a member.
All CA-IDMS systems that are members of the same group must specify the same
group name.

group-name
Must be a 1-8 character name consisting of characters A-Z, 0-9, $,# or @. Names
that begin with SYS or UNDESIG are reserved and cannot be used. Names that
begin with A-I may be in use by the operating system and should be avoided.

DCNAME=member-name
Specifies the member name of the system within a data sharing group. This name
also becomes the system (node) name, overriding the value specified in the system
definition.

member-name
Must be a 1-8 character name consisting of characters A-Z, 0-9, $,# or @.

 Usage:

Specifying a group name: All CA-IDMS systems that specify the same group
name are members of the same data sharing group and are therefore capable of sharing
update access to data as well as exploiting other features associated with data sharing
groups.

Specifying a member name: Member names must be unique within a data
sharing group. Member names should also be unique across your environment since
the member name becomes the system (node) name.

Changing group and member names: Once a CA-IDMS system has become a
member of a data sharing group, it remains a member until the system has been shut
down normally. This means that after an abnormal termination, the CA-IDMS system
must be restarted with the same group and member name as at the time of failure.
This also means that a failed group member cannot be restarted without a group and
member name.

Similarly, a CA-IDMS system that was not a member of a data sharing group can
become a member only if the system had previously terminated normally.

Chapter 13. CA-IDMS in a Sysplex Environment 13-27

13.3 Data Sharing

13.3.5 Sharing Update Access to Data

The ability to share update access to data is referred to as data sharing. It allows
multiple CA-IDMS systems to update specified areas of the database concurrently.

For data sharing to occur, each CA-IDMS system that shares update access must be a
member of a data sharing group. (See 13.3.2, “Data sharing groups” on page 13-19 for
more information.) Only members of one data sharing group can have update access
to a shared database area at one time. Other data sharing groups, other CA-IDMS
systems that are not members of the group and local mode IDMS applications can
access the area in retrieval mode only.

13.3.5.1 Shared Area Requirements

In order for an area to be eligible for data sharing, the following attributes of the area
and associated files must be identical in all sharing systems within a group:

Page range, page group and number of records per page

Segment and area names

 Page size

 File mappings

IDMS file names

DSNAME and VOLSER of the associated disk files

Additionally:

■ A shared area cannot be native VSAM.

■ An area that is part of a dictionary controlled by CA-Endevor/DB cannot be
shared.

■ No two shared areas within a data sharing group can have overlapping page
ranges within a page group.

■ Within a data sharing group, the combination of DSNAME and VOLSER must be
unique for all IDMS files associated with shared areas.

If these conditions are not satisfied, you must alter your DMCL and segment
definitions before declaring the area to be shared. Failure to do so means that one or
more members of the group is unable to access the area.

These requirements are waived on any CA-IDMS system that is accessing the area in a
transient retrieval mode regardless of whether or not the area has been designated for
data sharing.

13-28 CA-IDMS System Operations

13.3 Data Sharing

13.3.5.2 Notify Locking Considerations

Notify locks are supported in a data sharing environment. If a transaction executing in
one member places a notify lock on a record, it is informed of any changes made to
that record by other transactions regardless of where (in which member) the updating
transaction executes. However, cross-member notification of retrieval is not supported.
If an application relies on notification of retrieval, the database that it accesses should
not be shared for update.

13.3.5.3 Enabling Data Sharing

In addition to defining a data sharing group, the following tasks must be performed in
order to enable data sharing:

■ The DMCL of every member of the group must be altered to indicate that data
sharing is allowed

■ Each area that is to be eligible for data sharing must be so designated. This can
either be done in the DMCL or through DCMT commands.

■ Each file associated with a shared area must be associated with a coupling facility
cache structure. This can either be done in the DMCL or through DCMT
commands.

13.3.5.4 Altering the DMCL Definition

To enable data sharing, the DMCL definition for every system in the data sharing
group must be altered to indicate that data sharing is allowed and to specify certain
related information.

The DMCL definition may also be changed to indicate which areas are to be shared
and the shared cache structure to be associated with their files. This information
should be specified in the DMCL rather than through DCMT commands for areas that
are always or typically shared among members of the group.

For more information on DMCL and data sharing, refer to CA-IDMS Database
Administration.

Data sharing attributes that are defined in the DMCL include

■ Whether or not data sharing is to be used

■ The number of lock table entries

■ The maximum number of group members

■ A default shared cache

■ What to do if problems with the coupling facility are encountered

The impact of these attributes is discussed below.

Chapter 13. CA-IDMS in a Sysplex Environment 13-29

13.3 Data Sharing

Specifying data sharing attributes: Each data sharing group has an associated
coupling facility lock structure. The first CA-IDMS system to become a member of
the group, establishes the attributes of the lock structure. These attributes remain in
effect until all members of the group have terminated normally. As long as any
CA-IDMS system is either active or has failed and not yet been restarted, the existing
lock structure attributes remain in effect.

Specifying the number of lock table entries: The number of lock table entries
determines the number of hash entries within the lock structure that are used for
managing locks. The higher the number of lock entries, the less chance multiple
resources will hash to the same lock table entry, a situation that results in increased
overhead. However, the higher the number of lock table entries, the larger the size of
the lock structure. See 13.3.4.2, “Configuring the Coupling Facility” on page 13-23
for more information on sizing the lock structure.

As a guideline, specify as the number of lock entries, the highest SYSLOCKS value of
any CA-IDMS system that is a member of the data sharing group. The number of
lock entries is rounded up to a power of 2.

Specifying the maximum number of group members: The maximum number
of group members determines the number of CA-IDMS systems that can be members
of a data sharing group at any one time. If a CA-IDMS system terminates normally, it
does not count as a group member for the purposes of this limit; however, if a
CA-IDMS system terminates abnormally, it is still a member of the group until it is
restarted and shut down normally. The higher the maximum member count, the more
space is required in the lock structure. See 13.3.4.2, “Configuring the Coupling
Facility” on page 13-23 for more information on sizing the lock structure.

The value specified may be overridden by CFRM policy. For more information, refer
to the appropriate IBM manual. To determine the actual value in effect, use the
DCMT DISPLAY DATA SHARING command.

Specifying a shared cache: A shared cache is a structure defined within a
coupling facility that allows data stored in the cache to be shared by multiple
CA-IDMS systems. Assigning a file to a shared cache allows CA-IDMS systems to
use the cache as a shared buffer.

Files may be assigned to a shared cache whether or not their associated areas are
designated for data sharing. However, if an area is designated for data sharing, all of
its associated files must be assigned to a shared cache.

Specifying the connectivity loss option The ON CONNECTIVITY LOSS
parameter enables a site to specify what action a data sharing member should take in
the event that connectivity to the coupling facility is lost or a failure in the coupling
facility is detected. Specifying ABEND directs the system to abend immediately;
specifying NOABEND directs the system to remain active as long as possible. By
specifying NOABEND, it is possible for a member to remain active servicing requests
for non-shared areas. It is impossible to shut down the system normally.

13-30 CA-IDMS System Operations

13.3 Data Sharing

Using DCMT Commands: DCMT commands provide the ability to:

■ Change the default shared cache or connectivity loss setting for an IDMS system.
See DCMT VARY DATA SHARING in the CA-IDMS System Tasks and Operator
Commands guide.

■ Enable or disable data sharing for an area or for all areas in a segment. See
DCMT VARY AREA and DCMT VARY SEGMENT in the CA-IDMS System
Tasks and Operator Commands guide.

■ Change the shared cache for a file, for all files associated with an area, and for all
files in a segment. See DCMT VARY FILE, DCMT VARY AREA, and DCMT
VARY SEGMENT in the CA-IDMS System Tasks and Operator Commands guide.

Additional DCMT commands display information about data sharing. Refer to
13.3.11, “Monitoring Data Sharing Groups” on page 13-37 for more information about
these commands.

 13.3.6 Member Failure

When a member of a data sharing group fails, recovery is typically effected by
restarting the system and allowing warmstart to recover in the normal way. The
primary data sharing consideration is that the system must be restarted using the same
group and member names that were in effect at the time of failure.

Additionally, it is important to restart the system as soon as possible, since other
members are prohibited from accessing resources that need to be recovered by the
failing member. Refer to 13.3.9, “Accessing Unrecovered Data” on page 13-34 for
more information on how the system deals with attempts to access unrecovered data.

If warmstart fails, manual recovery must be used to restore the database to a valid
state. For more information about the impact of data sharing on manual recovery,
refer to CA-IDMS Database Administration.

13.3.7 Coupling Facility Failures

The following types of failures relating to the coupling facility can occur:

■ Loss of connectivity to a coupling facility structure

■ Failure of a coupling facility structure

■ An XES processing error

Loss of connectivity: Loss of connectivity to a coupling facility structure occurs
when a connector (in this case a CA-IDMS system) can no longer communicate with
the coupling facility in which the structure resides. Loss of connectivity may be the
result of operator commands or hardware failures. If connectivity is lost to the list or
lock structure associated with a data sharing group, the CA-IDMS system either
abnormally terminates or remains active so that requests that do not require access to
the affected structure can be serviced. The action taken depends on the connectivity

Chapter 13. CA-IDMS in a Sysplex Environment 13-31

13.3 Data Sharing

loss option that is in effect for the system. If the system remains active, tasks that
require access to the list or lock structure are abnormally terminated.

For information on establishing a connectivity loss setting, see 13.3.5.4, “Altering the
DMCL Definition” on page 13-29.

Structure failure: Structure failure indicates that a structure residing in the coupling
facility has been damaged. Damage may be due to hardware failures or XES
processing errors.

CA-IDMS treats a failure of the lock or list structure associated with a data sharing
group as a loss of connectivity to that structure. Depending on the connectivity loss
setting in effect, the system either abnormally terminates or remains active so that
requests that do not require access to the affected structure can be serviced. If the
system remains active, tasks that require access to the damaged structure are
abnormally terminated.

XES Processing error: An XES processing error results in the abnormal
termination of any CA-IDMS system that detects this condition. Contact IBM for the
appropriate response. If there is any doubt as to the integrity of the lock and list
structures associated with the data sharing group, follow the steps outlined below,
deleting both the list and lock structures if necessary.

Responding to Coupling Facility Failures: An error accessing the list or lock
structure associated with a data sharing group results in the abnormal termination of
every member that detects the problem. Termination may occur immediately, if the
connectivity loss option indicates ABEND, or it may be deferred until an attempt is
made to shut down the system. In either case, the system cannot be shutdown
normally, because it cannot successfully disconnect from at least one of either the list
or lock structures.

If the failure is due to a loss in connectivity, simply restart the failing CA-IDMS
systems after taking appropriate action to restore connectivity. If the loss in
connectivity is due to operator commands, issue the necessary commands to restore
connectivity before restarting the system. If the problem is due to a hardware failure
and another OS/390 image has connectivity to the coupling facility, the failed
CA-IDMS systems can be restarted there. If no such OS/390 image exists, take one of
the following actions:

■ Correct the hardware problem and restart the systems.

■ If an alternate coupling facility can be accessed, treat the loss in connectivity as a
structure failure and respond as outlined below. Recreate the list and lock
structures on the alternate coupling facility before restarting the systems.

■ Undertake manual recovery to roll out only the transactions active at the time of
failure. Initialize the journal files and restart one of the CA-IDMS systems as a
stand-alone system (that is, without data sharing enabled).

To recover from a failure of the list or lock structure, the following steps should be
taken:

13-32 CA-IDMS System Operations

13.3 Data Sharing

■ Terminate all remaining systems in the data sharing group. If they won't shut
down, cancel them.

■ Delete all connections to the failed structure and delete the failed structure using
SETXCF FORCE commands.

■ Restart all members that did not terminate normally. This results in a group
restart situation. For more information on restarting all members of a group, see
13.3.8, “Group Restart.”

 13.3.8 Group Restart

Group restart occurs when an inconsistency is detected during startup of a group
member. CA-IDMS uses an XCF group and coupling facility lock and list structures
in its data sharing support. Each of these maintains a status for each member of the
group. Group restart is necessary if there are inconsistencies in these statuses or if
either the lock or list structure doesn't exist when it should.

The purpose of group restart is to rebuild the lock and list structures from information
in the journal files of previously failed members. The need for group restart is
detected by a group member during startup. The first group member detecting the
need for group restart becomes the restart coordinator. It is the coordinator's
responsibility to monitor the progress of the restart process and direct the actions of
other members.

In order to complete group restart, all failed members must be restarted. Members that
had previously shut down normally may also be started during group restart, but this is
not necessary. The restart coordinator displays messages on the JES log showing the
restart's progress and indicating which members still need to be restarted. Once all
failed members known to the coordinator have been restarted, a message is sent to the
operator to confirm that all failed members have been restarted. It is the operator's
responsibility to ensure that this is true before responding positively. Failure to
include an abended member in the restart process can lead to corrupted data, since
uncommitted updates by such a member have neither been rolled out nor the affected
records locked to prevent access by other members.

During group restart, each previously failed member updates the list structure using
information contained in its journal files. This information reflects the status of shared
areas being processed by this member at the time of failure. The member then
proceeds with its normal warmstart process to rollout incomplete transactions. Any
transaction that cannot be rolled out is restarted and appropriate locks acquired to
protect the unrecovered data. Once this process is complete, startup is paused until all
failed members have been restarted and reached this point in their processing. When
this state is achieved, the restart coordinator, after confirmation from the operator,
informs the other members that group restart is complete. Members then complete
their startup process.

If group restart is interrupted because of a system failure, it can be restarted simply by
restarting the failed systems. The procedures to follow after other types of failures
depends on the nature of the error.

Chapter 13. CA-IDMS in a Sysplex Environment 13-33

13.3 Data Sharing

13.3.9 Accessing Unrecovered Data

When a group member fails after it has made changes to a shared area and before
those changes have been committed or rolled out, locks prevent access to the
unrecovered data until the failing member is restarted. These locks might prevent
access to an individual record, an entire page of records or an entire area, depending
on the resource type and mode of the lock held by the failing member. It is therefore
important to restart the failed member as soon as possible.

If a transaction on another system attempts to access unrecovered data, it can either
wait for the failed member to recover or it can abort. The choice of actions is
determined by the RECOVERY WAIT setting. This value is initially established in
the system definition (SYSTEM statement), can be displayed with DCMT DISPLAY
TIME, and can be dynamically changed using DCMT VARY TIME. Exit 37 can
override the recovery wait action for each task attempting to wait on an unrecovered
resource.

For more information, refer to the following:

■ CA-IDMS System Generation for the SYSTEM statement RECOVERY WAIT
parameter.

■ CA-IDMS System Tasks and Operator Commands for DCMT DISPLAY TIME and
DCMT VARY TIME.

■ 7.4, “Numbered exits” on page 7-49 in this book for exit 37.

13.3.10 Sharing Queues and Enqueued Resources

Data sharing groups provide the ability to share DC queues and enqueued resources
between members of the group. This enables online tasks executing in different group
members to communicate with one another just as if they were executing within the
same CA-IDMS system. Each of these facilities is described below.

 13.3.10.1 Sharing Queues

In order to share queues between group members, the system queue area
(DDLDCRUN) must be shared for update between members. Just as for any other
area, the queue area is shared for update by designating it as such in the DMCL or
through a DCMT command. A queue area may be shared by all or a subset of the
group's members. There can be only one shared queue area per data sharing group. For
more information on enabling data sharing for an area, refer to 13.3.5, “Sharing
Update Access to Data” on page 13-28.

If a CA-IDMS system is using a shared queue area, then all queues in that queue area
are assumed to be shared except those specified as local in an exception table. A
shared queue can be accessed by tasks executing on any group member sharing the
queue area. There is only one shared queue with a given name in a queue area.
Conversely, local queues are queues that can be accessed by only a single group
member. There can be as many local queues with a given name as there are members

13-34 CA-IDMS System Operations

13.3 Data Sharing

sharing the queue area. Local queues are automatically qualified by their associated
member name.

No changes are needed in application programs accessing queues in a shared queue
area, regardless of whether they are local or global. The same queue commands (GET
QUEUE, PUT QUEUE, etc.) are used.

Queue-initiated tasks are supported for shared queues, just as for non-shared queues.
The member that causes the queue threshold to be exceeded is the one on which the
queue-initiated task is executed.

Designating queues as local: If a queue area is shared, then by default all
queues in that queue area are shared. To specify a queue as local, add an entry to the
LCLQUEUE module using the #LCLRES macro and reassemble LCLQUEUE.
LCLQUEUE is distributed with one entry for the RHDCSETTIMETASKS queue.
This entry should always be included in any reassembly of the module.

The queue name of the local queue is specified in the RESNAME parameter of the
#LCLRES macro. Queues can be referenced generically by specifying an asterisk (*)
as the last character of the RESNAME value. A queue name specified in this way
indicates that all queues whose name matches that of the specified name (excluding the
asterisk) are local.

The following example designates MYQUEUE as a local queue by adding an entry to
the LCLQUEUE module:

#LCLRES TYPE=INITIAL,RESTYPE=QUEUE

#LCLRES RESNAME='RHDCSETIMETASKS'

#LCLRES RESNAME='MYQUEUE'

#LCLRES TYPE=FINAL

END

Switching queue scope: If there is a need to switch a queue from being shared to
local or vice versa, take the following steps:

■ Process and delete all existing queue entries

■ Use the QUED task to delete the queue

■ Create a new LCLQUEUE module adding or removing entries as necessary

■ Issue DCMT VARY NUCLEUS on every group member that shares the queue
area to bring in a new copy of the LCLQUEUE module

Impact of shared queues: Shared queues not only allow applications executing on
different group members to communicate with one another, but they also impact the
runtime system in the following ways:

■ Report queues are shared globally by all members sharing the queue area. This
means that reports can be printed on any group member that has a printer defined
for the report's class.

Chapter 13. CA-IDMS in a Sysplex Environment 13-35

13.3 Data Sharing

■ Checkouts of maps and dialogs are global across all members that share the queue
area. This means that if a dialog is checked out on one member of the group, it is
protected from check out on another member of the same group. The integrity of
the checkout is guaranteed only if dictionaries are referred to by the same
DBNAME in all sharing group members.

■ Messages that are to be sent to users whenever they sign on (using the SEND
ALWAYS command) are sent regardless of which member the user signs on to,
provided those members are sharing the queue area with the member on which the
DCUF command was issued.

13.3.10.2 Sharing Enqueued Resources

Within a data sharing group, all enqueued resources are global by default. This means
that if a task enqueues a resource exclusively on one member, that resource is
unavailable on all other members of the group.

Resources can be designated as local. Enqueues on local resources impact only the
system on which the enqueue is issued.

No changes in application programs are necessary in order to enqueue global or local
resources.

Designating resources as local: To designate a resource as local, add an entry
to the LCLENQDQ module using the #LCLRES macro. LCLENQDQ is distributed
with three entries needed for internal CA-IDMS processing. These entries should
always be included in any reassembly of the module.

The resource id of the local resource is specified in the RESNAME parameter of the
#LCLRES macro. Generic resource names can be specified by coding an asterisk (*)
as the last character of the RESNAME value. A generic resource name indicates that
all resources whose id matches that of the specified name (excluding the asterisk) are
local.

The following example designates any resource beginning with "MYRES" as a local
resource by adding an entry to the LCLENQDQ module:

#LCLRES TYPE=INITIAL,RESTYPE=ENQDEQ

�

� The following resource-ids are used internally by the

� system, and need a local scope in a data sharing � group environment.

�

 #LCLRES RESNAME='RHDCD�9I'

 #LCLRES RESNAME='RHDCTIMP'

 #LCLRES RESNAME='USERJRNL'

�

� Define other local resources here

�

 #LCLRES RESNAME='MYRES�'

�

 #LCLRES TYPE=FINAL

 END

13-36 CA-IDMS System Operations

13.3 Data Sharing

Switching resource scope: If there is a need to switch an enqueued resource
from being global to local or vice versa, take the following steps:

■ Create a new LCLENQDQ module adding or removing entries as necessary

■ Issue DCMT VARY NUCLEUS on every group member to bring in a new copy
of the LCLENQDQ module

Defining local print tasks: A local resource should be defined for every print task
defined using the #UCFUFT macro. To do this, add an entry to the LCLENQDQ
module specifying the PTID value in the #UCFUFT macro as the RESNAME value in
the #LCLRES macro.

13.3.11 Monitoring Data Sharing Groups

The following facilities can be used to monitor a data sharing group:

 ■ DCMT commands

 ■ Performance Monitor

 ■ Journal reports

13.3.11.1 Monitoring Through DCMT Commands

The following commands enable monitoring of various aspects of a data sharing group:

■ DCMT DISPLAY AREA

■ DCMT DISPLAY DATA SHARING

■ DCMT DISPLAY LOCK STATISTICS

Detailed descriptions of the output of these commands are provided in CA-IDMS
System Tasks and Operator Commands.

DCMT DISPLAY AREA: This command shows the sharability state of an area and
whether or not there is inter-CV-interest in the area.

Accessing a shared area for which there is inter-CV-interest results in higher overhead
because global locking must be used to control access to the area by members of the
data sharing group.

Accessing a shared area for which there is no inter-CV-interest incurs only slightly
more overhead than is if the area were not shared.

DCMT DISPLAY DATA SHARING: This command displays the following types of
information:

■ A list of group members and their status

■ Statistics associated with accessing the data sharing group's list and lock structures

■ Information regarding the available space in the lock structure

■ Statistics on XCF messages used for inter-member communication

Chapter 13. CA-IDMS in a Sysplex Environment 13-37

13.3 Data Sharing

 Member status:

Each member of a data sharing group has a member state that is assigned by XCF and
a user state that is assigned by CA-IDMS.

The XCF member states that may be associated with CA-IDMS systems are:

■ Active - indicating that the member is currently executing

■ Failed - indicating that the member has terminated abnormally

The user states that may be associated with CA-IDMS systems are:

■ Initial - indicating that startup is in progress for the member

■ Recovering - indicating that the member is in the process of recovering from a
prior abnormal termination

■ Ready - indicating that the member has completed recovery and is ready to open
the database system

■ Active - indicating that startup is complete

■ Quiescing - indicating that the system is in the process of closing the database
system

■ Quiesced - indicating that the database system has been closed

Monitoring available lock structure space: Record data entries are stored in the
coupling facility lock structure to record information about exclusive global transaction
locks. The more concurrently held exclusive locks, the more space is needed in the
lock structure.

The output of the DCMT DISPLAY DATA SHARING command allows you to
monitor the available space in the lock structure by displaying the maximum number
of record data entries that can be stored in the lock structure, the current number that
are in use, the highest number that were ever used and the number of times the lock
structure encountered a short-on-storage condition.

As the lock structure becomes full, CA-IDMS releases exclusive lock s on proxies, if
possible, to relieve the short-on-storage condition; however, this is undesirable because
it increases the overhead associated with global locking. Furthermore, even releasing
all unused proxy locks may not free up enough space in the lock structure. If there is
insufficient space to store a record data entry when one is required, the task requesting
the lock fails.

The amount of space in the lock structure can be increased while group members
remain active by using the SETXCF START ALTER command, provided the coupling
facility in which the lock structure resides contains sufficient free space. If it doesn't,
the lock structure must be reallocated. To do this all members in the data sharing
group must be shutdown and the CFRM policy changed.

13-38 CA-IDMS System Operations

13.3 Data Sharing

DCMT DISPLAY LOCK STATISTICS: The output from this command displays
information about local and global locks acquired to control access to transaction
resources.

Some points to note:

■ The ratio of global resource lock requests to local lock requests is a measure of
contention for resources between members. If there is no contention, this ratio is
small since the only global resource locks acquired are for areas and in an active
system in which areas are always readied in a shared mode, global area locks are
generally retained once they are acquired.

■ The ratio of the number of waits to the number of global requests is also a
measure of contention. This contention may be due to resource conflicts or other
factors, such as channel contention, or false contention caused by synonyms when
hashing to the lock table. If this ratio is high, use operating system tools to
determine the nature of the contention. False contention can be reduced by
increasing the number of entries in the lock table. See 13.3.5.3, “Enabling Data
Sharing” on page 13-29 for information on specifying the number of lock table
entries.

13.3.11.2 Monitoring Through Performance Monitor

Performance Monitor collects and reports on information associated with a data sharing
group. This capability is available through the Interval Monitor. There are online
display screens and Performance Monitor reports available. For more information,
refer to CA-IDMS Performance Monitor System Administration and CA-IDMS
Performance Monitor User Guide.

13.3.11.3 Monitoring Through Journal Reports

Journal reports show the nodename of the system that created the journal image. In a
data sharing environment, the nodename is the same as the system's membername.

Journal report 8 shows the time when the journal image was created. This time is
based on GMT (Greenwich Mean Time). This time, in conjunction with a journal
sequence number, is used to sort and merge journal images, both for images created by
a single system and across members in a data sharing environment.

For more information about journal reports, refer to CA-IDMS Reports.

Chapter 13. CA-IDMS in a Sysplex Environment 13-39

13.4 CV Cloning

 13.4 CV Cloning

 13.4.1 Overview

CV cloning allows you to start multiple CVs that are copies (clones) of an existing
system definition for a CA-IDMS system.

13.4.2 About CV cloning

CV cloning is designed to be used in a Sysplex environment, especially for cloning
back-end CVs for a DBGroup or members of a data sharing group.

For a clone that is not part of a data sharing group, all database areas are forced to a
status of RETRIEVAL, with the exception of the system log and queue areas.

For a clone that is a member of a data sharing group, see 13.4.4.5, “Using CV clones
with data sharing” on page 13-42.

13.4.3 Planning CV cloning

Planning the number of clones: You must decide in advance which CVs you
want to clone and how many clones of each you want to allow. You specify this
information in the system startup JCL.

You are limited to a maximum of 255 CVs within a Sysplex, regardless of the number
of SVCs you have installed or how many OS/390 images you are running.

Defining cloned CVs: The system definition of the CVs you wish to clone must
conform to specific naming conventions and include special definitions, and the system
start up JCL must include parameters for cloning.

13.4.4 Implementing CV cloning

To use CV cloning, you have to perform the tasks discussed in the following sections.

13.4.4.1 System definition requirements

System naming conventions: The system definition for a CV you wish to clone
must conform to specific naming conventions. By adhering to these naming
conventions, CA-IDMS can implement clones without generating multiple physical
copies of a system definition.

System definitions for systems that are cloned, must include:

■ The DC system number must match the CV number and must be in the range
from 0 through 255. At CV startup, this number is incremented as necessary to
locate an available number to assign to each cloned CV.

13-40 CA-IDMS System Operations

13.4 CV Cloning

The DC system number is the value specified on the first parameter of the system
definition SYSTEM statement, SYSTEM dc-ucf-version-number. CV number is
the value specified on the CVNUMBER parameter of the SYSTEM statement.

■ All VTAM ACB names must follow the convention, xxxxxnnn, where xxxxx can
be any five characters you assign to make the name unique within your
environment. Nnn is the sysgenned CV number and is overlaid at runtime with
the number determined during start up of the cloned CV; for example, to allow
multiple lines within the same CA-IDMS system.

■ CA-IDMS system node names must follow the pattern, yyyyynnn, where the first
five characters can be any characters you need to make the name unique within
your environment and the nnn is the number specified for the CV at system
generation. This number is overlaid at run time with the CV number determined
to be available at system startup.

Note: If you are modifying existing CA-IDMS system definitions, be sure to
change this node name on all statements in which it is referenced. For
example, the RESOURCE NAME and NODE system definition
statements.

Define simulator line: You must also define a simulator line (S3270Q), which
allows the clones to be configured without operator intervention. To do this,

Create commands to activate lines: Create an input dataset for the simulator
line that contains the appropriate DCMT commands to activate the communication
lines. The example below shows sample commands you might include in this dataset:

dcmt vary line ddsvtam on.

dcmt vary line cciline on.

13.4.4.2 Special file requirements for CV clones

Each cloned CV requires its own copy of the following files:

DDLDCLOG

DDLDCSCR

DDLDCQUE

All journals

13.4.4.3 System start up JCL requirements

The startup JCL for each CV you wish to clone must include the C EXEC PARM and
an upper limit value, which is used to select a system number and indicate the
maximum number of clones that can be created.

Sample startup JCL: To clone nine copies of CV IDMS090, the system startup
JCL for IDMS090 might look like this:

Chapter 13. CA-IDMS in a Sysplex Environment 13-41

13.4 CV Cloning

 Column Column Column

 � 1 2

 1 � 1

 ----+----+----+----+----+----+

//STARTUP EXEC PGM=DCUCFSYS,PARM='S=9� M8 C9'

 .

 .

 .

The C PARM specifies cloning is allowed and the 9 indicates that a maximum of 9
clones can be created. The number 9 is also used to search for an available system
number to assign to a clone, beginning with the system number specified on the S
PARM. For example, the first system number CA-IDMS uses to search for an
available system ID for a clone of IDMS090 is 91. If 91 is used, it uses 92 and so
forth, until it finds one or reaches 99.

13.4.4.4 Using CV clones with dynamic database session routing

CV cloning can be used with dynamic database session routing to allow multiple
copies of a back-end CV to be available to route requests to.

The illustration below shows the use of cloning with the back-end CVs assigned to the
EMPGROUP, which was defined in 13.2, “Using Dynamic Database Session Routing”
on page 13-10.

13.4.4.5 Using CV clones with data sharing

If a clone is a member of a data sharing group:

■ The area status of areas that have attribute DATA SHARING YES in the DMCL
is kept, that is, not forced to retrieval.

■ The node name is set to be the system's membername.

13-42 CA-IDMS System Operations

Appendix A. OS/390 Performance Considerations

A.1 Overview . A-3
A.2 Maximum number of files . A-4
A.3 Performance considerations . A-5

Appendix A. OS/390 Performance Considerations A-1

A-2 CA-IDMS System Operations

A.1 Overview

 A.1 Overview

This appendix discusses the following aspects of DC/UCF operations in an OS/390
environment:

■ The maximum number of files that can be accessed

 ■ Performance considerations

Appendix A. OS/390 Performance Considerations A-3

A.2 Maximum number of files

A.2 Maximum number of files

Normally an OS/390 job step can access up to 3,273 files. CA-IDMS has extended
this limit for a CV, to allow up to 10,000 files to be accessed using dynamic allocation
and 3,273 files to be accessed using DD statements. If more than 3,273 files are to be
accessed, the excess files must be defined for dynamic allocation.

Note: Since the maximum number of DD statements that can be associated with a job
step is 3273, if the number of database files in a DMCL is close to or exceeds
this limit, dynamic allocation should be used for all database files so that the
limit will not prevent the use of DD statements to override dynamically
allocated files when necessary.

In order to significantly increase the number of files accessed by a CV, it may be
necessary to reduce the CA-IDMS region size, both by adjusting the system definition
and lowering the REGION parameter specified on the EXEC card in the startup JCL.

Increasing the number of files beyond the 3273 limit has implications for manual
recovery, since the increased limit is supported only for CVs and not local mode batch
jobs such as utility executions. In order to perform manual recovery, it may be
necessary to execute the ROLLBACK or ROLLFORWARD utility statement multiple
times, recovering a subset of the areas or segments in each execution.

A-4 CA-IDMS System Operations

A.3 Performance considerations

 A.3 Performance considerations

When running a DC/UCF system under OS/390, system performance can be enhanced
by using selected OS/390 features. The following considerations apply:

■ Running nonswappable — For optimum performance, a DC/UCF system should
always be run nonswappable. If any dial-up lines are defined, the DC/UCF
system must be run nonswappable. If you execute COBOL II or PL/1 programs,
the DC/UCF system must be run nonswappable.

By default, the DC/UCF system runs nonswappable. To run swappable, specify
'S' in column 24 of the EXEC statement's PARM card. If the PARM card
specifies the DC/UCF system version number, column numbering starts in the
column after the system number. For example, the following PARM specification
directs the specified DC/UCF system to run swappable:

 Column Column Column

 � 1 2

 1 � 4

 ----+----+----+----+----

//STARTUP EXEC PGM=DCUCFSYS,PARM='S=91 S'

■ Page fencing — Performance can be enhanced by fencing off an area of real
storage for exclusive use by the DC/UCF system.

■ Performance groups — OS/390 allows the assignment of performance groups.
You can use this feature to assign the DC/UCF system a high priority.

The DC/UCF system should be assigned a performance group:

– Just below that of VTAM

– Above other TP access methods and batch performance groups.

– Above CICS and TSO.

■ Data spaces — You can use data spaces in an ESA environment to provide faster
access to high-activity database files.

LPA eligibility: Most nucleus modules are reentrant and are eligible to be put in the
link pack area (LPA). To obtain a complete list of eligible modules, run a load library
utility that lists the attributes of library members against your CA-IDMS load library.
All members that are marked REENTRANT are LPA eligible with the following
exceptions:

 ■ RHDCSCRM

 ■ RHDCSCRN

 ■ RHDCLINR

 ■ RHDCOS00

 ■ RHDCCSA

Appendix A. OS/390 Performance Considerations A-5

A.3 Performance considerations

Note: RHDCBANR, as distributed, is eligible for the LPA; if you modify the source,
it is no longer reentrant. RHDCUXIT is also eligible provided the exit(s) you
are using are reentrant.

User mode programs (anything with a #BALI or IDMSBALI linked with it) cannot be
in the LPA. However, non-executable load modules can be. These include CA-ADS
dialogs, ADSA application load modules, maps, subschemas, and IDD tables.

Any other module that might be loaded but which doesn't issue CA-IDMS calls is
eligible, provided it is truly reentrant.

Note: The size of the LPA has a direct effect on the region size available for the
private address space. Consult with the operating system systems programmer
to assign the size.

�� Refer to CA-IDMS Utilities for more information about the RELOAD,
FASTLOAD, and MAINTAIN INDEX utilities. Refer to the CA-IDMS ASF User
Guide for more information about the MAINTAIN ASF utility.

A-6 CA-IDMS System Operations

 Appendix B. VSE/ESA Considerations

B.1 Overview . B-3
B.2 Cross-address space communication . B-4
B.3 Storage considerations for the batch external interface B-5
B.4 Overriding VSE/ESA file specifications at run time B-6
B.5 Implementing VSE/ESA job accounting support B-7
B.6 SVA-eligible nucleus modules . B-8

Appendix B. VSE/ESA Considerations B-1

B-2 CA-IDMS System Operations

B.1 Overview

 B.1 Overview

This appendix discusses the following aspects of DC/UCF operations in a VSE/ESA
environment:

■ Cross-address space communication

■ Storage considerations for the IDMS batch external interface

■ Overriding VSE/ESA file specifications at run time

■ How to enable job accounting support

■ SVA-eligible nucleus modules

Appendix B. VSE/ESA Considerations B-3

B.2 Cross-address space communication

B.2 Cross-address space communication

Users can use cross-address space communication. For example, this allows you to
run CICS, DC/UCF, and batch jobs each in a separate address space, if desired.

Because this feature uses the shared virtual area (SVA) for communications, you may
need to expand the amount of storage allocated to the SVA. The following
considerations apply:

■ The SVA size is dependent on the number of external request units defined for
use in the DC/UCF system.

■ Each DC/UCF system has its own SVA storage needs. For example, two
DC/UCF systems take up twice the amount of space in the SVA.

B-4 CA-IDMS System Operations

B.3 Storage considerations for the batch external interface

B.3 Storage considerations for the batch external interface

The batch external interface causes all storage allocation and program loading to occur
in the program partition GETVIS area. To allocate enough storage, you must include
a SIZE parameter in the EXEC statement in the batch program execution JCL.

The SIZE parameter must allow for space beyond the size of the partition. The
following conditions apply to specifying the SIZE parameter on the EXEC statement:

■ The SIZE parameter must be large enough to allow the program and the batch
interface to be loaded.

■ The SIZE parameter must be small enough to allow all other modules to be loaded
in the remaining space.

For example, if PROG1 executes in a 1000K partition, the program execution JCL
might contain:

// EXEC PROG1,SIZE=3��K

The SIZE specification in the above statement allows 300K for PROG1 and the batch
interface, leaving 700K for all other modules, as shown below:

 Partition

 ───────────────────────────────

Address � IDMSINTB

 PROG1 (3��K)

 ───────────────────────────────

 IDMSDBMS

 IDMSDBIO

 IDMSSPF GETVIS area

 DMCL module (7��K)

 DMCL buffers

 subschema

 .

 .

 .

 .

 .

 additional modules

 ──────────────────────────────────

Appendix B. VSE/ESA Considerations B-5

B.4 Overriding VSE/ESA file specifications at run time

B.4 Overriding VSE/ESA file specifications at run time

You can override VSE/ESA file specifications for batch jobs that run under the central
version or in local mode by using the SYSIDMS parameter file. The SYSIDMS
parameter file allows, among other things, VSE/ESA users to specify information
about sequential files used by CA tools and utilities. Specifically, you can specify:

■ The file's file type

■ A block size

■ A block factor

■ A device address

■ Whether to use labels for a tape file

■ Whether to activate a facility that allows tape files to span multiple volumes

■ How a tape file should be positioned when it is opened or closed

�� For more information about the SYSIDMS parameter file, see CA-IDMS Database
Administration.

B-6 CA-IDMS System Operations

B.5 Implementing VSE/ESA job accounting support

B.5 Implementing VSE/ESA job accounting support

VSE/ESA job accounting support is required to collect CPU times for use by DC/UCF
timer facilities. Job accounting support is enabled at VSE/ESA IPL time. The job
accounting interface is enabled by using JA=YES specification in the IPL SYS
command within the Automatic System Initialization procedure (ASI PROC).

Appendix B. VSE/ESA Considerations B-7

B.6 SVA-eligible nucleus modules

B.6 SVA-eligible nucleus modules

Most nucleus modules are reentrant and are eligible to be put in the SVA. To get a
list of nucleus modules, you can a issue a DCMT DISPLAY MEMORY NUCLEUS
command. The following nucleus modules are not SVA eligible:

 ■ RHDCSCRM

 ■ RHDCSCRN

 ■ RHDCLINR

 ■ RHDCOS00

 ■ RHDCCSA

Note: RHDCBANR, as distributed, is eligible for the SVA; if you modify the source,
it is no longer reentrant. RHDCUXIT is also eligible provided the exit(s) you
are using are reentrant.

User mode programs (anything with a #BALI or IDMSBALI linked with it) cannot be
in the SVA. However, non-executable load modules can be. These include CA-ADS
dialogs, ADSA application load modules, maps, subschemas, and IDD tables.

Any other module that might be loaded but which doesn't issue IDMS or DC calls is
eligible, provided it is truly reentrant.

Note: The size of the SVA has a direct effect on the region size available for the
private address space. Consult with the operating system systems programmer
to assign the size. See B.2, “Cross-address space communication” on
page B-4 for SVA size considerations.

�� Refer to CA-IDMS Utilities for more information about the RELOAD,
FASTLOAD, and MAINTAIN INDEX utilities. Refer to the CA-IDMS ASF User
Guide for more information about the MAINTAIN ASF utility.

B-8 CA-IDMS System Operations

 Appendix C. VM/ESA Considerations

C.1 Overview . C-3
C.2 Communication between virtual machines C-4
C.3 Local mode database access . C-5

Appendix C. VM/ESA Considerations C-1

C-2 CA-IDMS System Operations

C.1 Overview

 C.1 Overview

In a VM/ESA environment, CA-IDMS database services can be made available
through:

■ A DC/UCF system executing in a VM/ESA virtual machine. This configuration is
discussed in CA-IDMS Installation and Maintenance Guide - VM/ESA.

■ A DC/UCF system executing under a guest operating system such as OS/390 or
VSE/ESA in a virtual machine. In this case, DC/UCF system operations appear
the same as when the operating system directly controls the resources of a real
computing system. Batch application programs requiring database services can
execute either under the guest operating system (in the guest operating system
virtual machine) or in a VM/ESA virtual machine.

■ CA-IDMS local mode operations. Local mode application programs can execute
either under a guest operating system or in a VM/ESA virtual machine.

This appendix discusses the following aspects of CA-IDMS operations in a VM/ESA
environment:

■ Communication between a DC/UCF system executing under a guest operating
system and a batch application program executing in a VM/ESA virtual machine

■ Access to database files in local mode

Appendix C. VM/ESA Considerations C-3

C.2 Communication between virtual machines

C.2 Communication between virtual machines

Communication between a DC/UCF system executing under a guest operating system
and a batch application program executing in a VM/ESA virtual machine occurs
through the following components:

■ The VM CP Virtual Machine Communication Facility (VMCF) passes control and
data between the batch interface and the CA-IDMS SVC.

■ The CA-IDMS SVC passes control and data between the DC/UCF system and the
VMCF. The CA-IDMS SVC routes calls from DC/UCF to the VMCF and from
the VMCF to DC/UCF.

If a DC/UCF system is to be accessed by application programs executing in
VM/ESA virtual machines, the CA-IDMS SVC used by the system must be
generated with VMCF enabled using the ENVIRON parameter of the #SVCOPT
macro for OS/390.

VSE/ESA guest operating systems: The CA-IDMS SVC generated by the
IDMSVCTB utility automatically includes the specification VMCF=YES.

�� For information on the CA-IDMS SVC, see Chapter 3, “Setting Up Interpartition
Communication and the SVC” on page 3-1.

The figure below illustrates how communication occurs between a DC/UCF system
executing under a guest operating system and an application program executing in
VM/ESA virtual machine:

┌───┐

│ │

│ VM/ESA │

│ ┌───────────┐ │

│ │ CP VMCF │ │

│ │ interface │ │

├────────────────────────┴─↑──────↑──┴──────────────────────────┤

│ │ │ │

│ ┌─────────────────┐ │ │ ┌────────────────────┐ │

│ │ CMS │ │ │ │ Guest │ │

│ │ │ │ │ │ operating system │ │

│ │ ┌─────────────┐ │ │ │ │ ┌──────────┐ │ │

│ │ │ Application │ │ │ └───┼──→ CA-IDMS │ │ │

│ │ │ Program │ │ │ │ │ SVC │ │ │

│ │ ├─────────────┤ │ │ │ └───↑──────┘ │ │

│ │ │ CA-IDMS │ │ │ │ │ │ │

│ │ │ batch │ │ │ │ │ │ │

│ │ │ interface ←─┼────┘ │ ┌───↓───────────┐ │ │

│ │ └─────────────┘ │ │ │ DC/UCF system │ │ │

│ └─────────────────┘ │ └───────────────┘ │ │

│ Virtual machine │ │ │

│ └────────────────────┘ │

│ Virtual machine │

└───┘

C-4 CA-IDMS System Operations

C.3 Local mode database access

C.3 Local mode database access

Local mode application programs must execute in an environment in which access to
the database files is possible. For example, if the database files are in OS/390 data set
format, programs requiring access to the files must execute in an OS/390 virtual
machine. If the database files are VM/ESA files, programs requiring access to the
files must execute in a VM/ESA virtual machine.

�� Detailed information on access to VM/ESA formatted database files is provided in
CA-IDMS Installation and Maintenance Guide - VM/ESA.

You can compile CA-IDMS application programs either under a guest operating
system or in a VM/ESA virtual machine. However, if a program compiled in a
VM/ESA virtual machine is to be used for database access under a guest operating
system, special considerations apply:

■ For OS/390 guest operating systems:

1. Issue the VM/ESA SET DOS OFF command.

2. Include the OSDECK parameter in the command to execute the VM/ESA
version of the compiler.

3. Transfer the compiler output to the guest operating system virtual machine.

4. Link edit the compiler output using the appropriate guest operating system
JCL.

■ For VSE/ESA guest operating systems:

1. Issue the VM/ESA SET DOS ON command.

2. Execute the VSE/ESA version of the compiler

3. Transfer the compiler output to the guest operating system virtual machine.

4. Link edit the compiler output using the appropriate guest operating system
JCL.

Appendix C. VM/ESA Considerations C-5

C-6 CA-IDMS System Operations

 Appendix D. BS2000/OSD Considerations

D.1 About this appendix . D-3

Appendix D. BS2000/OSD Considerations D-1

D-2 CA-IDMS System Operations

D.1 About this appendix

D.1 About this appendix

Refer to CA-IDMS Usage Under BS2000/OSD chapter "Defining the CA-IDMS
Environment in BS2000/OSD" for more information.

Appendix D. BS2000/OSD Considerations D-3

D-4 CA-IDMS System Operations

Appendix E. DC/UCF Test Environment

E.1 Overview . E-3
E.2 Programs and the test environment . E-5

E.2.1 General considerations . E-5
E.2.2 Programs in the load areas . E-5
E.2.3 Programs in load (core-image) libraries E-6

E.3 The test environment at run time . E-8
E.3.1 Load lists . E-8
E.3.2 SYSLOAD load list . E-8

E.4 Example of test environment execution E-10

Appendix E. DC/UCF Test Environment E-1

E-2 CA-IDMS System Operations

E.1 Overview

 E.1 Overview

DC/UCF provides facilities for establishing a test environment in which a mix of test
and production application programs execute under one DC/UCF system in a
controlled fashion. When you use the test environment, multiple copies of the same
program can exist in one DC/UCF system:

■ The production copy of a program is the copy defined with a version number of 1.
By default, DC/UCF executes version 1 programs for an application.

■ Each test copy of a program is assigned a version number other than 1 when the
program is added to the system.

The term program refers to various types of definitions, including:

■ Assembler, COBOL, and PL/I programs

 ■ Database procedures

■ Dialogs (CA-ADS, CA-ADS/BATCH)

■ Edit and code tables

 ■ Maps

 ■ Subschemas

 ■ Access modules

Test version number: When you enable the test facility for your terminal session,
you specify a test version number. DC/UCF then uses the test version number to
determine which copy of a program to execute at run time. As shown in the figure
below, DC/UCF executes programs with the test version number whenever possible.

When one application contains several programs that require testing, you give the same
version number to all test programs that are to be executed during the same test.

For example, assume that modifications to production program A require you also to
execute a slightly modified copy of program B. In this case, you assign the same test
version number (for example, 5) to the test copies of both programs A and B:

Appendix E. DC/UCF Test Environment E-3

E.1 Overview

1. You define a test version number for your terminal session:

DCUF TEST 5

2. You execute an application:

Version 5 programs

are executed whenever possible

 │

 ┌──────────┐ ┌────↓──────┐

 │ Program A│ │ Program A │

 │ Version 1│ │ Version 5 │

 └──────────┘ └────┬──────┘

 │

 │

 │

 ┌──────────┐ ┌────↓──────┐

 │ Program B│ │ Program B │

 │ Version 1│ │ Version 5 │

 └──────────┘ └────┬──────┘

 │

 ┌──────────────────────────────┘

 │

 ┌────↓─────┐

 │ Program C│

 │ Version 1│

 └────┬─────┘

 │

 │

 │

 ┌────↓─────┐

 │ Program D│

 │ Version 1│

 └────┬─────┘

 │

 │

 ↓

E-4 CA-IDMS System Operations

E.2 Programs and the test environment

E.2 Programs and the test environment

The DC/UCF test environment allows you to define multiple copies of the same
program in one DC/UCF system. The way that each copy of a given program is
differentiated from other copies of the program depends on whether the programs are
stored in:

■ A dictionary load (DDLDCLOD or DDLCATLOD) area

■ Load (core-image) libraries

Specific discussions about programs in load areas and programs in load (core-image)
libraries are provided on the following pages, after the general considerations presented
below.

 E.2.1 General considerations

As a safeguard, it is advisable to enable storage protection for test programs to prevent
them from updating storage belonging to other programs. At system generation time,
storage protection is enabled by using both the SYSTEM and PROGRAM statements.

Storage protection can also be enabled for a program at run time by means of the
DCMT VARY PROGRAM STORAGE PROTECT ON command (provided that
PROTECT is specified in the system generation SYSTEM statement).

Subschema load modules can be generated with different version numbers. However,
the source copy of the subschema always has a version number of 1.

E.2.2 Programs in the load areas

When storing multiple copies of a program in either the DDLDCLOD and
DDLCATLOD dictionary load areas, you differentiate each copy of the program from
other copies by the unique combination of:

 ■ Version number

 ■ Dictionary name

 ■ Node name

In the following example, each of the following copies of PROGRAMA is identified
by a unique combination of version number and dictionary name:

Program name Version number Dictionary name

PROGRAMA 1 TESTDICT

PROGRAMA 5 TESTDICT

PROGRAMA 5 QADICT

Appendix E. DC/UCF Test Environment E-5

E.2 Programs and the test environment

Defining a program to the system: You specify the version number, dictionary
name, and/or node name for a program when you define the program in the load area.
A program is defined to the system in one of the following ways:

■ Manually by using the system generation PROGRAM statement

■ Automatically by using a CA-IDMS compiler (for example, the subschema
compiler) or a CA-IDMS development tool (for example, ADSG or ADSOBGEN)

■ Dynamically by using the DCMT VARY DYNAMIC program command at run
time

�� For more information about defining programs, see CA-IDMS System Generation

For more information about DCMT VARY PROGRAM DYNAMIC, see CA-IDMS
System Tasks and Operator Commands.

E.2.3 Programs in load (core-image) libraries

The number of load (core-image) libraries that can be defined at your site depends on
your operating system:

■ Under VSE/ESA, you can concatenate multiple load (core-image) libraries in one
LIBDEF statement.

■ Under OS/390, VM/ESA, and BS2000/OSD, a DC/UCF system can have multiple
load libraries.

Note: Load libraries must not be allowed to create multiple extents. Multiple extents
result in I/O error messages and messages stating a module cannot be found.

When storing multiple copies of a program in load libraries, you differentiate each
copy of the program from other copies by assigning each copy to a different load
library. For example, you can store one copy in the CDMSLIB load library and
another copy in the V0005 load library.

Library version numbers: By default, load (core-image) libraries in the test
environment have version numbers. When the test environment searches for a
program by version number, it searches for the program in the load (core-image)
library that has the current version number. Programs in a given load (core-image)
library have the same version number as the library:

■ Programs in CDMSLIB are version 1 (production) programs.

■ Programs in other load libraries (under OS/390, VM/ESA, and BS2000/OSD)
receive the version number given by the 4-character numeric suffix of the load
library's ddname/linkname. For example, a program in V0005 has a version
number of 5. A program in V0010 has a version number of 10.

Load lists: The load list in effect when you use the test environment overrides the
way that the test environment selects load libraries based on version numbers. More
information about load lists is given later in this appendix.

E-6 CA-IDMS System Operations

E.2 Programs and the test environment

Dynamically loading a program: A program can be added to a library after
system startup and then used for run-time operations by requested that DC/UCF load a
new copy of the program. You can use the DCMT VARY PROGRAM NEW COPY
command to request a new copy of a defined program.

Load library status: You can vary load libraries online or offline by means of the
DCMT VARY LOADLIB command. A load library that you've varied offline will not
be searched. To examine load library status, use the DCMT DISPLAY LOADLIB
command.

CA-ICMS systems: At OS/390 sites, one or more test load libraries can be set up
to facilitate testing and migration under CA-ICMS. Due to overhead considerations, the
smallest group of CA-ICMS users should be assigned to use the test load library. For
example, if few production users currently exist, those users can be assigned to the test
load library.

Appendix E. DC/UCF Test Environment E-7

E.3 The test environment at run time

E.3 The test environment at run time

You enable the test facility for your current terminal session by using the DCUF TEST
command. By using this command, you also specify a test version number (for
example, 5). When the test facility is enabled and you execute an application:

1. DC/UCF searches first for application programs defined with the current test
version number

2. If DC/UCF cannot find a copy of the program defined with the test version
number, DC/UCF searches for version 1 of the program

You disable the test facility by using the DCUF TEST OFF command.

 E.3.1 Load lists

The load list for your current terminal session determines the path that DC/UCF
follows when searching for programs to be loaded. The load list identifies the load
(core-image) libraries and data dictionaries to be searched and specifies the order that
DC/UCF is to follow while searching.

DC/UCF always uses the system-supplied SYSLOAD load list. Users can optionally
use site-defined load lists instead of SYSLOAD. Load lists are defined by the system
generation LOADLIST statement.

At run time, a user enables an existing load list for the current terminal session by
using the DCUF SET LOADLIST command. For an example of how load list
definitions influence the test facility, see the SYSLOAD discussion below.

E.3.2 SYSLOAD load list

The system-supplied SYSLOAD load list is shown below. The SYSLOAD load list
uses special keywords when identifying load (core-image) libraries and data
dictionaries. These keywords identify libraries and dictionaries symbolically.
SYSLOAD keywords are:

■ USER-DEFAULT — Instructs DC/UCF to search using a user-specified value.
As a user, you can specify a dictionary by using DCUF SET
DICTNODE/DICTNAME. You specify a dictionary and load library version
number by using DCUF TEST.

■ SYSTEM-DEFAULT — Instructs DC/UCF to search using a system default value.

ADD LOADLIST SYSLOAD

DICTNAME IS USER-DEFAULT VERSION IS USER-DEFAULT

DICTNAME IS SYSTEM-DEFAULT VERSION IS USER-DEFAULT

LOADLIB IS USER-DEFAULT

DICTNAME IS USER-DEFAULT VERSION IS 1

DICTNAME IS SYSTEM-DEFAULT VERSION IS 1

LOADLIB IS SYSTEM-DEFAULT

E-8 CA-IDMS System Operations

E.3 The test environment at run time

Program search: When you have enabled the test environment and the
SYSLOAD load list is in effect, DC/UCF follows the SYSLOAD definition (shown
above) when searching for programs. In this case, DC/UCF:

1. Searches for a program defined with the current test version number:

■ In the current session default (if any) dictionary load area

■ In the system default dictionary load area

■ In the load library (under OS/390, VM/ESA, and BS2000/OSD) whose suffix
is the same as the current test version number (for example, V0005 for test
version 5)

2. Searches for a version 1 copy of the program if the test version cannot be found.
DC/UCF searches:

■ In the current session default (if any) dictionary load area

■ In the system default dictionary load area

■ In the CDMSLIB load (core-image) library

If DC/UCF cannot find either a test version or a production version of the program,
DC/UCF returns a not-found condition.

Appendix E. DC/UCF Test Environment E-9

E.4 Example of test environment execution

E.4 Example of test environment execution

test environment and run-time operations in that environment. It assumes the default
loadlist, SYSLOAD, is used. The example shows how the programs in sample task X
are executed in the test environment. The constituent procedures of sample task X are
shown below:

System generation statements

Task Code X ──────┐ Invokes Program A

 │

 ┌─────↓──────┐

│ Program A │

 └─────┬──────┘

 │

 ┌─────↓──────┐ Uses ┌───────────────┐

│ Program B ├──────────→ Map MP1 │

└─────┬──────┘ Map MP1 └───────────────┘

 │

 ┌─────↓──────┐ Uses ┌──────────────┐

│ Program C ├───────────→ Subschema SST│

└────────────┘ subschema └──────────────┘

 SST

DC/UCF system generation statements include:

TASK X INVOKES PROGRAM A

PROGRAM A.

PROGRAM B.

PROGRAM MP1 MAP.

PROGRAM C.

PROGRAM SST SUBSCHEMA.

PROGRAM A VERSION 7.

PROGRAM C VERSION 7.

PROGRAM SST VERSION 7 SUBSCHEMA.

Startup JCL: DC/UCF startup JCL or VM/ESA commands define load libraries for
use by the test facility. The test versions of programs A and C reside in
CDMS.TESTLIB and their production versions reside in CDMS.PRODLIB. The JCL
or commands are shown below, by operating system:

 ■ OS/390

//CDMSLIB DD DSN=CDMS.PRODLIB,DISP=SHR

//V���7 DD DSN=CDMS.TESTLIB,DISP=SHR

 ■ VSE/ESA

// DLBL IDMSLIB,'IDMS.LIBRARY',2�99/365

// EXTENT ,nnnnnn,,,ssss,15��

// LIBDEF PHASE,SEARCH=(IDMSLIB.SUBLIB,USER��7.TESTLIB)

E-10 CA-IDMS System Operations

E.4 Example of test environment execution

 ■ VM/ESA

FILEDEF CDMSLIB DISK idmslib LOADLIB a2 (RECFM V LRECL 1�24 BLKSIZE 1�24

 FILEDEF V���7 DISK user userlib LOADLIB a2 (RECFM V LRECL 1�24 BLKSIZE 1�24

 ■ BS2000/OSD

/ADD-FILE-LINK L-NAME=CDMSLIB,F-NAME=CDMS.PRODLIB

/ADD-FILE-LINK L-NAME=V���7,F-NAME=CDMS.TESTLIB

At run time: At run time, the following programs are used when task X is executed
from terminals that have requested DCUF TEST 7:

The following programs are used when task X is executed from terminals that have not
enabled the test environment:

Program Version Loaded from

A 7 CDMS.TESTLIB (V0007)

B 1 CDMS.PRODLIB (CDMSLIB)

MP1 1 DDLCDLOD area

C 7 CDMS.TESTLIB (V0007)

SST 7 DDLDCLOD area

Program Version Loaded from

A 1 CDMS.PRODLIB (CDMSLIB)

B 1 CDMS.PRODLIB (CDMSLIB)

MP1 1 DDLCDLOD area

C 1 CDMS.PRODLIB (CDMSLIB)

SST 1 DDLDCLOD area

Appendix E. DC/UCF Test Environment E-11

E-12 CA-IDMS System Operations

Appendix F. Simulating 3270-Type Terminals

F.1 Overview . F-3
F.1.1 Online simulator . F-4
F.1.2 Batch simulator . F-4

F.2 Starting and ending a simulator session . F-6
F.3 Facsimile screens . F-7
F.4 Composing input lines . F-8

F.4.1 General instructions . F-9
F.4.2 Simulating control keys . F-10
F.4.3 Changing the simulator environment F-12

F.5 Additional batch simulator topics . F-13
F.5.1 System configuration . F-13

F.5.1.1 System generation statements . F-13
F.5.1.2 Configurations for multiple lines and terminals F-14

F.5.2 Control commands . F-15
F.5.2.1 MAXTERM . F-16
F.5.2.2 PAUSE . F-16
F.5.2.3 SET . F-17
F.5.2.4 TERMINAL . F-19
F.5.2.5 TIME . F-20

F.5.3 Batch simulator output . F-21
F.5.3.1 Representation of 3270 terminal attributes F-21
F.5.3.2 Information provided for screen images F-21
F.5.3.3 Sample screens . F-22

F.5.4 Executing the batch simulator . F-24
F.5.4.1 OS/390 systems . F-24
F.5.4.2 VSE/ESA systems . F-25
F.5.4.3 VM/ESA Systems . F-25
F.5.4.4 BS2000/OSD systems . F-26

F.6 Simulator messages . F-27

Appendix F. Simulating 3270-Type Terminals F-1

F-2 CA-IDMS System Operations

F.1 Overview

 F.1 Overview

You can use the DC/UCF simulation facility to simulate 3270-type terminal operations
at non-3270 terminals or in a batch environment. The simulator outputs facsimiles of
3270-type screens whenever online application activities and flow of control would
cause a screen to be output at a 3270-type terminal. You can use the 3270 simulation
facility in online or batch mode:

■ The online simulator allows you to simulate 3270-type terminal operations at a
non-3270 terminal, such as a TTY or a 2741-type terminal.

■ The batch simulator allows you to simulate 3270-type online operations in batch
mode. This capability allows you to simulate either single or multiple terminal
DC/UCF configurations in a single batch simulator job.

How the simulator processes input: The figure below shows how the simulator
processes input lines. You can use the simulation facility to execute, without
modifications, any user program designed to run in a normal DC/UCF online
environment. The simulator is completely transparent to all modes of DC/UCF
terminal I/O:

 ■ Basic mode

 ■ Line mode

 ■ Mapping mode

Appendix F. Simulating 3270-Type Terminals F-3

F.1 Overview

�� For instructions on how to perform device-independent mapping operations at glass
TTY terminals, see the CA-IDMS Mapping Facility.

 F.1.1 Online simulator

When you use the online simulator, the simulator displays at your terminal a facsimile
3270 screen, as described above, whenever application flow of control would cause a
screen to be displayed to a 3270 online user.

You enter simulator input in a single line beneath the displayed facsimile screen. To
submit your input data to the simulator, press your terminal's input key (for example,
[Return]).

 F.1.2 Batch simulator

You enter all input lines for a given batch simulator session in a single batch
card-image data set. You code input in columns 1 through 72 on the data set. The
batch simulator ignores columns 73 through 80.

Batch simulator lines and terminals: A simulated DC/UCF system can have a
single line with multiple terminals or multiple lines with multiple terminals.
More information is given in "System configuration" presented along with
other batch simulator topics at the end of this appendix.

F-4 CA-IDMS System Operations

F.1 Overview

You submit the card-image data set to the batch simulator when you execute the
simulator by using JCL or VM/ESA commands. Output returned by the batch
simulator consists of the screen images that normally would have been displayed on a
terminal screen. Output is written to an output (SYSOUT) data set. From there, you
can route the output to a line printer.

Details about batch simulator execution and output are described in F.5, “Additional
batch simulator topics” on page F-13.

Appendix F. Simulating 3270-Type Terminals F-5

F.2 Starting and ending a simulator session

F.2 Starting and ending a simulator session

The way you start and end a simulator session differs depending on the simulation
mode you are using.

You start and end an online simulator session at your terminal by using the DCUF
SIMULATE command.

You start a batch simulator session when you submit a data set of input lines to the
batch simulator by using JCL statements. JCL for the batch simulator is given in F.5,
“Additional batch simulator topics” on page F-13.

A batch simulator session automatically ends when the batch simulator finishes all
simulation activities required by the last line in the input data set.

F-6 CA-IDMS System Operations

F.3 Facsimile screens

 F.3 Facsimile screens

The DC/UCF simulator outputs a facsimile 3270-type screen whenever an online
program would display the screen to a user at a 3270 terminal. The screen is either
displayed on your screen (online simulation) or written to an output data file (batch
simulation).

marks each field into which you can enter data. An underscore (_) shows the cursor
position. For example, the following facsimile screen has 4 literal fields and 4
variable fields. The cursor is positioned at the EMPLOYEE NAME variable field:

EMPLOYEE NAME:?

 _ (cursor)

ID NUMBER....:? SOC SEC NUMBER:?

DEPARTMENT...:?

Appendix F. Simulating 3270-Type Terminals F-7

F.4 Composing input lines

F.4 Composing input lines

Your input lines simulate all operations that an online user would perform in response
to a given screen. For example, the following input line simulates how an online user
would add information about Mary Smith in response to the facsimile employee
information screen shown above:

MARY SMITH%TAB 1�45D%TAB 135-21-8546%TAB ACCOUNTING%ENTER

In the display above:

■ %TAB simulates a pressed tab key

■ %ENTER simulates a pressed [Enter] key

Contents of input: When you use the simulator in either online or batch mode,
your input consists of:

■ Input data that you enter in the same order that an online user would enter the
data.

For example, suppose an application data-entry screen prompts you to enter an
employee ID before you enter the employee's name. In this case, you organize
your input line so that the ID number is in front of the employee name.

■ Keywords that simulate control keys. These keywords are listed in F.4.2,
“Simulating control keys” on page F-10.

■ Commands that change the simulator environment. These commands are listed
later in this appendix.

How to compose simulator input lines: The figure below shows how you
compose simulator input lines to simulate online 3270 terminal operations. General
instructions for composing input lines are provided below, followed by specific
information on simulating control keys and changing the simulator environment.

This figure shows how to simulate the simplified online application shown on the left
using the simulator input line shown on the right. In this sample application, the menu
screen is redisplayed each time an online user presses [Enter]:

F-8 CA-IDMS System Operations

F.4 Composing input lines

 F.4.1 General instructions

An input line can contain any combination of input data and simulator keywords and
commands. It can contain multiple data-fields worth of input data. For example, you
can use the 4 methods below to compose a simulated input data line for the screen
below:

NAME.....:

STATE....:

CITY.....:

■ Method 1 — You can code the simulated input line all on one line:

JOHN DOE%TAB 1134 FOREST-GLEN RD%TAB BOSTON MA%ENTER

■ Method 2 — You can code the simulated input line on two lines using a
continuation character. A hyphen (-) is the default continuation character (when at
the end of an input line):

JOHN DOE%TAB 1134 FOREST-GLEN RD%TAB -

BOSTON MA%ENTER

■ Method 3 — You can code the simulated input line on two lines, wrapping a word
(in this example, BOSTON) to a new line:

JOHN DOE%TAB 1134 FOREST-GLEN RD%TAB BOS-

TON MA%ENTER

■ Method 4 — You can code the simulated input line on three lines:

Appendix F. Simulating 3270-Type Terminals F-9

F.4 Composing input lines

JOHN DOE%TAB 1134 FOREST--

GLEN RD%TAB -

BOSTON MA%ENTER

Coding rules: Observe the following instructions when composing an input line:

■ Start each simulator keyword and command with an escape character. The default
escape character is the percent sign (%). For example:

%ENTER

The simulator interprets the term after the escape character as a simulator
keyword.

■ Separate simulator keywords and commands by using a blank. For example:

field1%NL %FM word2 word3

■ Continue input from one line to another (batch simulator only) by using the
continuation character. To do this, you end the first line with the continuation
character and then continue that line on the next line. The default continuation
character is the hyphen (-). For example:

DEMODICT%TAB %TAB -

EMPMAP%ENTER

When you use a continuation character, the character must be the last (nonblank)
character of the line. Continuation characters entered before the last nonblank
character in the line are treated as data. Blanks that follow the continuation
character on a given line are ignored.

■ Terminate each input line either by a continuation character or by a simulated
3270 ENTER, CLEAR, PAn, PFnn, or CNCL control key. The simulator
automatically executes a simulated ENTER key at the end of the input line if the
line does not end with any of the above.

For example, the simulator interprets the following sample input as two separate
input lines, each ended with an ENTER:

MAY SMITH%TAB 1�45D%TAB

135-21-8546%TAB ACCOUNTING%ENTER

In this example, you indicate that the first line is continued to another line by
ending the first line with a continuation characters (the hyphen is the default).

Escape and continuation characters: You can change the simulator escape and
continuation characters during a simulator session by using the SET command,
described in F.4.3, “Changing the simulator environment” on page F-12.

F.4.2 Simulating control keys

During a simulator session, you simulate 3270-type terminal control keys by using the
simulator keywords listed below. When you enter any of these keywords, begin the
keyword with the current escape character.

The ENTER, CLEAR, PAn, PFnn, and CNCL keywords terminate an input line. The
simulator automatically executes the ENTER command for an input line that neither
ends with any of these commands nor ends with a continuation character.

F-10 CA-IDMS System Operations

F.4 Composing input lines

3270 simulator keywords: These are the 3270-type control keys and events which
can be simulated with a keyword. Begin each keyword with the current escape
character. In the information below, % is the escape character, and acceptable
abbreviations are shown in parentheses.

■ Control key simulation

■ Cursor movement simulation

■ Light pen simulation

Keyword Simulated key

%CLEAR (%C) [Clear]

%CNCL (%CN) [Cancel]

%DUP (%D) [Dup]

%ENTER (%E) [Enter]

%EREOF (%ERE) [EOF]

%ERINP (%ERI) ERASE INPUT key

%FM (%F) [FieldMark]

%NL (%N) New line key

%PAn [PA1], [PA2], or [PA3]

%PFnn [PF1] through [PF24]

%RESET (%R) RESET

Keyword Simulated key

%BACKTAB (%B) [BackTab]

%MOVECUR (%M) (row, column) Cursor movement keys; the cursor is set at the
specified row and column (enclosed in
mandatory parentheses)

%SKIP SKIP key; skips the cursor to the next
unprotected field

%TAB (%T) (%) [Tab]; identical to skip

Keyword Simulated event

%SELECT (%SEL) (row, column) Selects the specified row and column (enclosed
in mandatory parentheses)

Appendix F. Simulating 3270-Type Terminals F-11

F.4 Composing input lines

F.4.3 Changing the simulator environment

During a simulator session, you can use the commands listed below to change the
simulation environment.

For information on additional simulator commands and SET options available for use
only in a batch simulator session, see F.5.2, “Control commands” on page F-15
presented along with other batch simulator topics.

Option to change Command description

Continuation
character

%SET CONTCHAR=continuation-character

The new continuation character must be a single character.
The continuation character indicates that the current input
line is continued on the next line. The default is the hyphen
(-).

Escape character %SET ESCAPE=escape-character

The new escape character must be a single character. The
escape character indicates the start of a simulator keyword.
The default is the percent sign (%).

Message level
(online simulator
only)

%MSG n

In this command, n must be an integer in the range 1 through
3. The message level determines how much information the
simulator returns after each input operation:

■ 1 — Output screens and error messages

■ 2 — Input screens, output screens, and all simulator
messages

■ 3 — Input screens, output screens, all simulator
messages, and hexadecimal traces of input and output
data streams

For more information on message levels, see the DCUF
SIMULATE command.

F-12 CA-IDMS System Operations

F.5 Additional batch simulator topics

F.5 Additional batch simulator topics

This section presents the following batch simulator topics:

■ System configuration for the batch simulator

 ■ Control commands

 ■ Batch-simulator output

■ Executing the batch simulator by means of JCL or VM/ESA commands

■ Run-time error and status messages

 F.5.1 System configuration

You use the DC/UCF system generation compiler to create an DC/UCF system that
can execute in batch mode.

�� For a complete description of system generation procedures, see CA-IDMS System
Generation.

Additionally, VSE/ESA users must define input and output files for the batch simulator
to use. To do this, you must use #DVFILE macros, as discussed in Chapter 2,
“System Startup.”

F.5.1.1 System generation statements

You use the same system generation statements to generate a batch DC/UCF system as
you use to generate an online DC/UCF system. The following special considerations
apply to the LINE, PTERM, and LTERM statements:

■ The LINE statement defines the batch input/output data sets to be sued for
simulating 3270-type devices. Specify line type S3270Q for batch 3270
simulation.

■ The PTERM statement associates a physical terminal device to be simulated with
a batch data set and specifies the characteristics of the device. You can specify
either of the following terminal types, allowing simulation of a variety of screen
size:

– Terminal type S3277 (models 1 and 2)

– Terminal type X3278 (models 1 through 5)

The table below lists the terminal types and modules that you can specify, along
with corresponding screen sizes.

■ The LTERM statement is used to define a logical terminal and to associate the
logical terminal with a batch simulator physical terminal.

Valid terminal types and modules

Appendix F. Simulating 3270-Type Terminals F-13

F.5 Additional batch simulator topics

Sample statements: The following example shows system generation LINE,
PTERM, and LTERM statements that allow you to simulate an DC/UCF system with a
single line and terminal. The input and output data sets are named SIMIN1 and
SIMOUT1, respectively. The simulated screen is 12 rows by 40 columns (that is, type
S3277, model 1).

LINE line-name TYPE=S327�Q

 INPUT DDNAME=SIMIN1

 OUTPUT DDNAME=SIMOUT1.

PTERM pterm-name TYPE=S3277

 MODEL=1.

LTERM lterm-name

PTERM IS pterm-name.

PTERM statement (TYPE and
MODEL)

Screen size (rows x columns)

S3277 1 12 x 40

S3277 2 24 x 80

S3278 1 12 x 80

S3277 2 24 x 80

S3277 3 32 x 80

S3277 4 43 x 80

S3277 5 27 x 133

F.5.1.2 Configurations for multiple lines and terminals

To simulate several 3270-type devices, use either of the following configurations:

■ A single communication line with multiple terminals — In a
single-line/multiterminal configurations, one card-image data set includes
simulated input from multiple terminals. When you use the batch simulator, you
use the TERMINAL statement to specify the terminal that issues a given input
line. More information on the TERMINAL statement is given in F.5.2, “Control
commands” on page F-15.

To create a single-line/multiterminal configuration, code one LINE statement.
After the LINE statement, code a PTERM statement and and LTERM statement
for each terminal in the configuration. The following example gives a
configuration with 1 line and 2 terminals:

LINE LINE��1 TYPE=S327�Q

 INPUT DDNAME=SIMIN1

 OUTPUT DDNAME=SIMOUT1.

PTERM TERMX TYPE=S3277 MODEL=1.

LTERM LTERM X ENABLED PTERM IS TERMX.

PTERM TERMY TYPE=X3278 MODEL=2.

LTERM LTERMY ENABLED PTERM IS TERMY.

F-14 CA-IDMS System Operations

F.5 Additional batch simulator topics

■ Multiple communication lines with multiple terminals — In a
multiline/multiterminal configuration, each simulated communications line is
represented by a dedicated card-image data set.

To create a multiline/multiterminal configuration, code 1 LINE statement for each
simulated line. After each LINE statement, code one or more PTERM statements,
each specifying a unique terminal ID. The following example illustrates a
configuration with 2 lines and 2 terminals:

LINE LONE TYPE=S327�Q

 INPUT DDNAME=SIMIN1

 OUTPUT DDNAME=SIMOUT1.

 PTERM TONE TYPE=S3277 MODEL=2.

 LTERM LT1�2 ENABLED PTERM IS TONE.

LINE LTWO TYPE=S327�Q

 INPUT DDNAME=SIMIN2

 OUTPUT DDNAME=SIMOUT2.

 PTERM TTWO TYPE=S3278 MODEL=4.

 LTERM LT1�4 ENABLED PTERM IS TTWO.

 F.5.2 Control commands

To simulate real-time processing, DC/UCF provides the batch simulator control
commands described below. Each of these control commands is detailed in
alphabetical order after the table.

You include these commands in the input card-image data set that you submit to the
batch simulator. With the exception of the MAXTERM function, all of the simulator
control commands presented below are optional and are normally followed by a
simulated input data line.

Purpose Control command

Specifying terminal
information

■ MAXTERM — Use MAXTERM to specify the
maximum number of terminals to be simulated in the
current batch simulator input data set.

■ TERMINAL — In a single-line/multiterminal
configuration, use TERMINAL to specify the terminal to
which the current simulated input data line applies.

Changing
characteristics of the
simulator session

■ PAUSE — PAUSE controls the timing of the input
relative to the time the input request is issued. PAUSE
applies only to the current input data line.

■ SET — SET changes the escape and continuation
characters in effect and sets a default pause interval for
subsequent terminals on the simulated communications
line.

■ TIME — TIME controls the timing of input relative to
the beginning of the simulator session. TIME applies
only to the current input data line.

Appendix F. Simulating 3270-Type Terminals F-15

F.5 Additional batch simulator topics

 F.5.2.1 MAXTERM

Purpose: MAXTERM allows you to specify the number of physical terminals on a
simulated communications line. You also can use MAXTERM to suppress the
hexadecimal trace printed by the batch simulator.

 Syntax

��──── MAXTERM=terminal-count ─┬───────────┬──────────────────────────────────��

└─ NOTRACE ─┘

 Parameters

terminal-count
Specifies the maximum number of terminals on the simulated line. Terminal-count
must be a positive integer.

NOTRACE
Suppresses printing of the hexadecimal trace on batch simulator output.

Usage: General coding rules for MAXTERM

■ MAXTERM must be the first statement in the input card-image data set.

■ You can code MAXTERM anywhere between columns 1 and 72.

■ Embedded blacks are not permitted.

Number of terminals to specify

To minimize storage requirements for the batch simulator, MAXTERM should specify
the actual number of terminals being simulated. For example, if an DC/UCF system is
generated with 5 terminals but the simulator run requires only 2 terminals,
MAXTERM should specify 2.

 F.5.2.2 PAUSE

Purpose: PAUSE allows you to control the timing of input operations for a single
input line. You typically use the PAUSE command to override the current default
pause interval. Using PAUSE, you can simulate a real-time environment in which
timing is critical.

To set a default session or terminal pause interval, you can use the SET command
presented later in this appendix.

 Syntax

��──── current-escape-characterPAUSE=pause-interval ──────────────────────────��

 Parameters

current-escape-character
Specifies the current one-character escape character.

F-16 CA-IDMS System Operations

F.5 Additional batch simulator topics

pause-interval
Specifies the amount of time, in real-time seconds, to elapse between when the
input request is issued and the time the application program receives the input data
line. Pause-interval must be a positive integer.

Example: The data entry screen appears below:

EMPLOYEE NAME:?

EMPLOYEE ID..:?

The batch simulator input lines appear below. Note that the actual data set does not
contain intervening blank lines.

MAXTERM=3

%SET PAUSE=5 PAUSE2=3 Sets the default pause

interval to 5 seconds for terminals

1 and 3, and to 3 seconds for

 terminal 2.

%TERMINAL=1 J. DOE%TAB 123%ENTER First request from terminal

1 (sent to the program after

5 seconds elapse).

%TERMINAL=2 J. SMITH%TAB �988%ENTER First request from terminal

2 (sent after 3 seconds elapse).

%TERMINAL=1%PAUSE=6 F. JONES%TAB 1287%ENTER Changes the pause interval

to 6 seconds for terminal 1.

This request is sent after 6

 seconds elapse.

%TERMINAL=1 S. LAKE%TAB �987%ENTER This terminal 1 request

is sent after 5 seconds elapse

(the pause interval reverts

to the terminal's default).

%TERMINAL=3%TIME=4� J. BROWN%TAB 4536%ENTER First request from terminal 3.

Because of the TIME command,

this request is sent to the program

4� seconds after the start of the

 simulator session.

 F.5.2.3 SET

Purpose: SET allows you to set or change various parameters of the current batch
simulation session. For example, you can use SET to change the escape character for
the session or to set a default pause interval for a given simulated terminal's input.

Changes established by the SET command apply to all data input on the simulated
communication line until another SET command is encountered.

 Syntax

Appendix F. Simulating 3270-Type Terminals F-17

F.5 Additional batch simulator topics

��──── current-escape-characterSET ───�

 �─┬───────────────────────────────────┬──────────────────────────────────────��

├─ ESCAPE=escape-character ─────────┤

├─ CONTCHAR=continuation-character ─┤

├─ PAUSE=pause-interval ────────────┤

├─ ECHO ← ──────────────────────────┤

└─ NOECHO ──────────────────────────┘

 Parameters

current-escape-character
Specifies the current one-character escape character.

ESCAPE=
Specifies a new escape character.

The default escape character is the percent sign (%).

escape-character
The new one-character escape character.

CONTCHAR=
Specifies a new continuation character.

The default continuation character is the hyphen (-).

If you include the CONTCHAR parameter in a SET command, use the new
continuation character for subsequent lines in the SET command.

continuation-character
The new one-character continuation character.

PAUSE=
Specifies a new default pause interval. The pause interval is the amount of time,
in real-time seconds, that will elapse between the time the input request is issued
and the time the application program receives the input data line.

pause-interval
Sets the default pause interval for all terminals on the simulated
communication line. The specified pause interval overrides any pause
intervals previously established for individual terminals during the simulation
session.

Pause-interval must be a positive integer.

terminal-id=pause-interval
Specifies a new default PAUSE interval for the specified terminal.

Both terminal-id and pause-interval must be positive integers.

ECHO
Specifies that input lines are echoed (printed) as they are read. ECHO is the
default.

NOECHO
Specifies that input line are not echoed (printed) as they are read. This feature
can be used, for example, to prevent the printing of passwords. For example:

F-18 CA-IDMS System Operations

F.5 Additional batch simulator topics

SIGNON SYSADMIN

ADMIN1

%SET NOECHO

ADPASSX

%SET ECHO

Usage: General codes rules for SET

■ The SET command must begin in column 1 of the first card-image record in the
input data line.

■ SET parameters must be separated from one another by at least 1 blank.

■ Embedded blanks are not permitted within a given parameter expression.

■ Each parameter expression must be coded on a single card-image line.

■ You cannot continue 1 parameter from one line to the next.

Example: The data entry screen appears below:

INVOICE NUMBER..:?

PART NUMBER.....:?

PERCENT DISCOUNT:?

The batch simulator input lines appear below. Note that the actual data set does not
contain intervening blank lines:

MAXTERM=3

%SET ESCAPE=@ PAUSE=3 PAUSE2=5 Sets the @ sign as the

escape character and specifies

default pause intervals of 3

seconds for terminals 1 and 3

and 5 seconds for terminal 2.

@TERMINAL=3 1234@TAB AB123@TAB 1�%@ENTER Specifies input. The percent

sign is entered as a data value.

@TERMINAL=2 15432@TAB ER321@TAB 12%@ENTER

@SET ESCAPE=% Changes the default escape

character to the % sign, but

does not change the pause interval.

%TERMINAL=1 98765%TAB DC543%TAB Specifies input. The percent

sign is used as the escape

character and also entered as a

 data value.

%2�%%ENTER

 F.5.2.4 TERMINAL

Purpose: TERMINAL allows you to specify the physical terminal from which the
current input data line is to be transmitted. If the TERMINAL command is omitted,
the input data line defaults to the terminal last specified or, it no terminal was
specified, to the first terminal in the configuration.

 Syntax

��──── current-escape-characterTERMINAL=terminal-number ──────────────────────��

Appendix F. Simulating 3270-Type Terminals F-19

F.5 Additional batch simulator topics

 Parameters

current-escape-character
Specifies the current one-character escape character.

terminal-number
Specifies the terminal to which the input data line applies.

Terminal-number must be a positive integer in the range 1 through the terminal
count specified in the MAXTERM command submitted with the input data set. If
terminal-number exceeds the value specified in the MAXTERM command, the
associated input data line will be ignored.

Usage: General coding rules for TERMINAL

■ The TERMINAL command must be coded on the first card image of the
simulated input data line to which it applies.

■ Embedded blanks are not permitted.

Example: The data entry screen appears below:

NAME....:?

CITY....:?

The batch simulator input lines appear below. Note that the actual data set does not
contain intervening blank lines:

MAXTERM=4 Specifies the maximum

number of terminals on the

 simulated line.

%TERMINAL=3 JOHN DOE%TAB BOSTON MA%ENTER Input data from

 terminal 3.

%TERMINAL=2 JAN WHITE%TAB NEWTON MA%ENTER Input data from

 terminal 2.

%J.D. STONE%TAB HUDSON NY%ENTER Input data from

 terminal 2.

%TERMINAL=6 B. JONES%TAB RYE NH%ENTER This input line will

be ignored because the

MAXTERM statement allows

only for terminals 1

 through 4.

%TERMINAL=4 L. VANN%TAB NY NY%ENTER Input data from

 terminal 4.

 F.5.2.5 TIME

Purpose: TIME allows you to delay processing for a specified number of seconds
relative to the start of the simulation session. The input data line is not considered
received by the application program until the specified number of seconds has elapsed.

 Syntax

��──── current-escape-characterTIME=time-interval ────────────────────────────��

F-20 CA-IDMS System Operations

F.5 Additional batch simulator topics

current-escape-character
Specifies the current one-character escape character.

time-interval
Specifies the amount of time, in real-time seconds, that will elapse between the
beginning of the simulator session and the time the input data line is received by
the program. Time-interval must be a positive integer.

Usage: General coding rules for TIME

■ The TIME command must be coded on the first card image of the simulated input
data line to which it applies.

■ Embedded blanks are not permitted.

F.5.3 Batch simulator output

The output generated by the batch simulator consists primarily of screen images.

F.5.3.1 Representation of 3270 terminal attributes

The batch simulator represents 3270-type field characteristics (attributes) by printing
special overprinted characters for each attribute. The table below lists the overprinted
characters used by the batch simulator. These characters also are listed on the first
page of each batch simulator output file.

F.5.3.2 Information provided for screen images

Each screen image that the batch simulator prints contains the information identified
below:

■ Information preceding the screen image:

– The time, in real-time seconds, relative to the start of the simulator session

– The terminal to which the simulated data entry operation applies

Appendix F. Simulating 3270-Type Terminals F-21

F.5 Additional batch simulator topics

– The I/O operation performed by the application program, preceded by three
dollar signs; for example:

$$$ ERASE/WRITE OPERATION

– The simulated input data line, for read requests only, printed exactly as it
appears on the card-image record

– Simulator messages, preceded by three dollar signs, that indicate the status of
the terminal before the I/O request and that list any errors that may have been
encountered in the input data set; for example:

$$$ MODIFIED DATA TAGS HAVE BEEN RESET

– A hexadecimal trace consisting of the 3270 device-control characters and
output data that follow a write request

■ The screen image enclosed in asterisks

■ Information following the screen image:

– Simulator messages, preceded by three dollar signs, that indicate the status of
the terminal before and after an I/O request and that list any errors that may
have been encountered in the input data set; for example:

$$$ KEYBOARD IS UNLOCKED

– A hexadecimal trace consisting of the 3270 device-control characters and
input data submitted as operator input

 F.5.3.3 Sample screens

Following is a series of sample screen images output by the batch simulator.

DC prompts the user for a task code

Simulated entry of task code QPSG

F-22 CA-IDMS System Operations

F.5 Additional batch simulator topics

DC outputs the screen for the program invoked by the task code

Simulated entry of order date

Appendix F. Simulating 3270-Type Terminals F-23

F.5 Additional batch simulator topics

F.5.4 Executing the batch simulator

You execute the batch simulator by using JCL or VM/ESA commands. Your JCL (or
VM/ESA commands) starts up the system on which you will simulate 3270-type
activities using the batch simulator.

�� For detailed system startup JCL or commands appropriate to your operating system,
see Chapter 2, “System Startup.”

 F.5.4.1 OS/390 systems

In the JCL you use to start up the system for simulation, you must identify the input
and output files to be used by the simulator. Sample ddname specifications for the
input and output files are shown below:

//simout DD SYSOUT=A,DCB=(RECRM=FBA,LRECL=121=BLKSIZE=121�)

//simin DD DSN=siminfle,DCB=(RECFM=F,LRECL=8�,BLKSIZE=8�)

You also must specify additional input and output line assignments if you plan to use
multiline simulation. You submit batch simulator input statements at the end of the
JCL statements for the system.

Item Description

simin ddname of the simulator input file

siminfle data set name of the simulator input file

simout ddname of the simulator output file

F-24 CA-IDMS System Operations

F.5 Additional batch simulator topics

 F.5.4.2 VSE/ESA systems

Before you start up the system for simulation, you must define the files to the
VSE/ESA system. To do this, you code #DVFILE macros for the files.

�� For details about how to do this, see Chapter 2, “System Startup.”

In the JCL you use to start up the system for simulation, you must identify the input
and output files to be used by the simulator. Sample JCL statement for these files are
shown below:

// DLBL simin,'idms.simin',,DA

// EXTENT sys�98,nnnnnn

// ASSGN sys�98,DISK,VOL=nnnnnn,SHR

// DLBL simout,'idms.simout',,DA

// EXTENT sys�99,nnnnnn

// ASSGN sys�99,DISK,VOL=nnnnnn,SHR

You also must specify additional input and output line assignments if you plan to use
multiline simulation. You submit batch simulator input statements at the end of the
JCL statements for the system.

Item Description

idms.simin file-id of the simulator input file

idms.simout file-id of the simulator output file

nnnnnn volume serial number

simin filename of the simulator input file

simout filename of the simulator output file

sys�98 logical unit assignment of the simulator input file

sys�99 logical unit assignment of the simulator output file

 F.5.4.3 VM/ESA Systems

In the VM/ESA commands you use to start up the system for simulation, you must
identify the input and output files to be used by the simulator. Sample commands for
these files are shown below:

FILEDEF simout PRINTER (RECFM FBA LRECL 121 BLKSIZE 121

FILEDEF simin DISK simin input a (RECFM F LRECL 8� BLKSIZE 8�

Appendix F. Simulating 3270-Type Terminals F-25

F.5 Additional batch simulator topics

You also must specify additional input and output line assignments if you plan to use
multiline simulation. You submit batch simulator input statements after you have
entered all commands to start the system.

Item Description

simin ddname of the simulator input file

simin input a file ID of the simulator input file

simout ddname of the simulator output file

 F.5.4.4 BS2000/OSD systems

In the JCL commands you use to start up the system for simulation, you must identify
the input and output files to be used by the simulator. Sample commands for these
files are shown below:

/ADD-FILE-LINK L-NAME=simin,F-NAME=idms.simin

/ADD-FILE-LINK L-NAME=simout,F-NAME=idms.list.simout

You also must specify additional input and output line assignments if you plan to use
multiline simulation. You submit batch simulator input statements at the end of the
JCL commands for the system.

Item Description

idms.list.simout filename of the simulator output file

idms.simin filename of the simulator input file

simin linkname of the simulator input file

simout linkname of the simulator output file

F-26 CA-IDMS System Operations

F.6 Simulator messages

 F.6 Simulator messages

The DC/UCF batch and online simulators return status and error messages to you
along with screen images. All messages, with the exception of BEEP, are prefixed by
three dollar signs ($$$) when they are output by the simulator.

When you use the online simulator, your current message level determines the
messages you receive at your terminal. To change your message level, use the %MSG
command discussed in F.4.3, “Changing the simulator environment” on page F-12.

Simulator messages are presented below in alphabetical order:

BEEP

Reason: During an output operation (write or erase/write), the write control character
(WCC) in the output data stream was set to sound the 3270 audible alarm.

ENTER KEY ASSUMED AT indicated-position

Reason: During a simulated data entry operation, the batch simulator did not
encounter a keyword, such as ENTER, CLEAR, CNCL, PAn, or PFnn, that terminates
the input data line.

The ENTER function is assumed immediately after the last nonblank character on the
last card of the input data line. As asterisk is printed directly beneath the card-image
record of the input data line to indicate the position at which the batch simulator has
assumed the ENTER keyword. Note that this message can be generated if an error in
the input data line causes premature termination of the input operation.

ERASE ALL UNPROTECTED OPERATION

Reason: For an output-type request, the 3270 erase-all-unprotected-fields function has
been enabled by the issuing program.

ERASE/WRITE OPERATION

Reason: For an output-type request, the 3270 erase/write function has been enabled
by the issuing program.

EXPECTED CONTINUATION CARD NOT FOUND

Reason: During a simulated data entry operation, the batch simulator has processed
the last card in the input data set having a continuation character as the last nonblank
character. The expected continuation card is not present in the data set. Therefore,
the input data line is terminated.

Appendix F. Simulating 3270-Type Terminals F-27

F.6 Simulator messages

FIELD NOT DETECTABLE

Reason: During a simulated data entry operation, a field specified by the SELECT
keyword in the simulated input data line does not have the light-pen detectable
attribute.

FIELDS WITH SPECIAL ATTRIBUTES

Reason: For an output-type request, at least one field on the screen has a nondisplay
or light-pen detectable attribute, or has the modified data tag bit set. This message is
followed by a list of the fields having special attributes, arranged by field row and
column number.

HEXADECIMAL TRACE

Reason: This message indicates that the printed line to follow is a hexadecimal
representation of the input or output data stream. For an output-type request, the
hexadecimal trace contains the output data stream, including device-control characters,
as constructed by the issuing program and received by the batch simulator for
simulated display. For an input-type request, the hexadecimal trace contains the input
data stream, including device-control characters, as constructed by the batch simulator
and transmitted to the program.

IGNORING %SELECT AT indicated-position

Reason: This message follows another error message and indicates that a previous
error in the input data line has caused the SELECT keyword to be ignored. An
asterisk is printed directly below the ignored SELECT keyword.

ILLEGAL BUFFER ADDRESS-X'hhhh'

Reason: This message is generated if an I/O-type request references a buffer address
that is larger than the size of the simulated screen, as defined in the PTERM statement.
For output-type requests, this error occurs following a set-buffer-address order in the
output data stream. For input-type requests, this error occurs following an
erase-unprotected-to-address operation in the position field of a
read-buffer-from-position request.

INPUT INHIBITED AT indicated-position

Reason: During a simulated data entry operation, the simulator is unable to interpret
the screen position defined by the MOVECUR or SELECT keyword. The row and
column values of the screen position must be specified as (row, column) followed by a
blank. The row and column values must be one-, two-, or three-digit nonzero
numbers.

KEYBOARD IS LOCKED

Reason: For an output-type request, the write control character (WCC) in the output
data stream indicates that the keyboard is to be locked (disabled).

F-28 CA-IDMS System Operations

F.6 Simulator messages

KEYBOARD IS LOCKED, RESET ASSUMED

Reason: The keyboard is currently locked; the previous I/O operation did not reset
the keyboard. To perform the data entry operation, the simulator must assume a
RESET keyword in the input data line. Normally, the RESET keyword must be
specified before input can be accepted.

KEYBOARD IS UNLOCKED

Reason: For an output-type request, the write control character (WCC) in the output
data stream indicates that the keyboard is to be reset (unlocked).

KEYWORD IGNORED

Reason: This message follows the INVALID SCREEN POSITION AT message
during a simulated data entry operation and indicates that the MOVECUR or SELECT
keyword will not be processed.

MAXTERM SET TO terminal-count

Reason: This message indicates the number of terminals to be simulated during the
current simulation session. Terminal-count is the numeric value specified in the
MAXTERM statement on the first card on the input data set.

MAXTERM WAS NOT SPECIFIED ON THE FIRST CARD. CARD WILL
BE IGNORED

Reason: During a simulated data entry operation, the batch simulator could not locate
the MAXTERM statement on the first card on the input data set. The number of
terminals to be simulated will default to the number of physical terminals defined in
the system generation program.

MODIFIED DATA TAGS HAVE BEEN RESET

Reason: For an output-type request, the write control character (WCC) in the output
data stream requests an operation to reset the modified data tag (MDT).

NO UNPROTECTED FIELDS ON SCREEN

Reason: This message follows the INPUT INHIBITED AT message and indicates
that no unprotected fields appear on the screen. The simulated data entry operation is
terminated.

NUMERIC LOCK OCCURRED AT indicated-position

Reason: During a simulated data entry operation, the batch simulator has encountered
a non-numeric character in a numeric field. This message is a warning. The character
will be inserted at the position of the cursor. On a 3270 device with the numeric lock
feature, entry of a non-numeric character causes the keyboard to lock.

Appendix F. Simulating 3270-Type Terminals F-29

F.6 Simulator messages

OPERATION CHECK

Reason: This message indicates that the I/O operation has terminated due to a logical
error caused by an invalid buffer address.

OUTPUT DATA STREAM ENDS IN MIDDLE OF A BUFFER ADDRESS

Reason: For an output-type request, the output data stream has ended prematurely
following a set-buffer-address order, repeat-to-address order, or
erase-unprotected-to-address order. The current output operation is terminated with an
operation check.

READ MODIFIED OPERATION (NO OPERATOR OUTPUT)

Reason: This message is generated as a result of an input operation in which the
issuing program has requested an input of all modified fields in the 3270 buffer.

READ OPERATOR INPUT OPERATION

Reason: For an input-type operation, the issuing program has requested an input of
all screen entries required by the application.

SCREEN IS UNFORMATTED

Reason: During a simulated data entry operation, the simulator has encountered a
SELECT keyword when no light-pen detectable fields have been defined.

SET COMMAND

Reason: During a simulated data entry operation, the batch simulator has encountered
a SET command in the input data line. The SET command is printed by the batch
simulator on the screen image.

SYNTAX ERROR IN SET COMMAND

Reason: During a simulated data entry operation, the batch simulator has encountered
an invalid parameter in the SET command. The SET command is printed on the
screen image with an asterisk directly above the invalid parameter.

TABBING TO NEXT UNPROTECTED

Reason: During a simulated data entry operation, the batch simulator has encountered
a protected field on the screen and must tab to the next unprotected field in an attempt
to insert the input data character.

UNDEFINED CHARACTER CODE IN OUTPUT DATA STREAM-X'hh'

Reason: For an output-type request, the output data stream contains an invalid 3270
order code, an invalid DUP character, or an invalid FIELD MARK character. The
hexadecimal value of the invalid byte is printed as X'hh' and is stored as a null
character. On a 3270-type device, this invalid byte can cause unpredictable results.

F-30 CA-IDMS System Operations

F.6 Simulator messages

UNDEFINED DESIGNATOR CHARACTER

Reason: During a simulated data entry operation, the batch simulator has encountered
a screen field that was specified by the SELECT keyword and does not have the
proper designator character. The first character of a light-pen detectable field should
be a question mark, greater-than symbol, blank, or null. The SELECT specification is
ignored.

UNDEFINED KEYWORD AT indicated-position

Reason: During a simulated data entry operation, the batch simulator has been unable
to interpret a keyword in the input data line. The keyword may be misspelled or not
followed by a blank, or, in the case of MOVECUR and SELECT, the screen position
may be undefined.

WRITE OPERATION

Reason: This message is generated by the batch simulator to indicate that an
output-type request has been issued by the program.

Appendix F. Simulating 3270-Type Terminals F-31

F.6 Simulator messages

F-32 CA-IDMS System Operations

 Index

Special Characters
#DCPARM macro

allowing startup overrides 2-7
BS2000/OSD systems 2-7—2-8
OS/390 systems 2-9
overrides (VSE/ESA) 2-39
usage 2-6—2-8
VM/ESA systems 2-41
VSE/ESA systems 2-16

#DEFSVC macro 3-38, 3-40—3-42
#DEFXIT macro 7-56—7-60
#DVFILE macros F-13

See also RHDCFTAB phase (VSE/ESA)
macro formats 2-21—2-32
purpose 2-17, 2-18
sample file definitions 2-19—2-21

#FESTDEF macro 5-57
#FESTENT macro 5-58
#GETSTK macro 7-54
#HSTDEF macro, histogram defaults 9-26—9-30
#MOPT macro 7-52
#RTN macro, numbered exit routines 7-54
#START macro 8-13

numbered exit routines 7-52—7-54
#SVCOPT macro (OS/390, MSP/EX)

defining 3-33—3-37
#UCFBTCH macro 5-14—5-72
#UCFCICS macro 5-22
#UCFCICZ macro 5-30
#UCFCMS macro 5-34—5-36
#UCFDBDC macro 5-37—5-38
#UCFDEND macro 5-7, 5-12
#UCFIMS macro 5-42—5-44
#UCFIMSP macro 5-72—5-73
#UCFIMSS macro 5-72, 5-73—5-74
#UCFTIAM macro 5-45—5-47
#UCFTSO macro 5-47
#UCFUFT macro 5-5, 5-7, 5-9, 5-74
#UCFUTD macro 5-7, 5-9—5-12
#UCFUTM macro 5-50, 5-51—5-52
#UCFUTMF macro 5-51, 5-52—5-53
#UCFUTMS macro 5-51, 5-53
#UDASBCH macro 4-28
#XIT macro, calling numbered exits 7-55

A
abend detection 10-4—10-5
abend storage 2-59
access module 1-8
ADS-PLUS-DRIVER module 4-44
advanced program-to-program

communications 4-40—4-44
See also emulated APPC
See also real APPC

alternate log files
See sequential log files

alternate task codes 10-20
AMODE

See XA support
APPC

See advanced program-to-program communications
See emulated APPC
See real APPC

Applications, using dynamic database session
routing 13-15

ARCHIVE JOURNAL utility
IDMSAJNX user exit 7-5
WTOEXIT user exit 7-36

ARCHIVE LOG utility 11-4
AREA ACQUISITION THRESHOLD parameter

tuning 10-6, 10-15
areas, security (user exits) 7-67
asynchronous terminal connection exit (exit 19) 7-72
autotasks, startup 2-59

B
Back-end CVs

assigning to DBGroups 13-12
CREATE DBGROUP statement 13-12
planning 13-11

back-end system
See UCF systems

batch 3270 simulation
defining files for VSE/ESA 2-21, 2-27
input data set specifications F-4
system configuration F-13

Batch applications, dynamic routing of 13-13
batch front-end, input statements 5-19, 5-21
batch mode, online simulation F-3
batch programs

accessing 10.2 services 3-8

Index X-1

batch programs (continued)
local mode operations 1-12
SVC (CA-IDMS) 3-8

bind parameters
See VTAM mode table entry for real APPC

BS2000/OSD JCL
batch front-end execution 5-21
batch print program 5-70
batch print support module 5-67
DC front-end load module 5-40
DC/UCF startup 2-50
DC/UCF startup execution 2-46
for a DC/UCF test environment E-10
front-end table 5-14
IDMSOPTI module 3-30
RHDCHIST module 9-29
RHDCUXIT 7-62
sample batch print program 5-71
system table 5-61
TIAM front-end execution 5-47
TIAM front-end load module 5-46
UTM front-end load module 5-55
UTM front-end load module preparation 5-53

BS2000/OSD systems
See also multitasking support
See also XA support
#DCPARM considerations 2-7
common memory pool 2-8, 2-59
DC/UCF startup 2-44—2-50
DC/UCF system startup ENTER file 2-44
DC/UCF system startup overrides 2-45
DC/UCF system storage acquisition 2-53
log file considerations 11-5
program execution 8-4

BS2KSTAR module 2-45
Buffers

sharing across CVs 13-3
BYE task 5-5

C
CA-ADS

calculated RBBs 10-23
dialog statistics 9-17—9-20
fast mode threshold 10-23
relocatable threshold 10-23

CA-IDMS
batch interface 1-12
central version operations 1-7—1-11
CICS interface 6-4, 6-25—6-36
interface module (IDMS) 1-12

CA-IDMS (continued)
local mode operations 1-7, 1-12

CAIRIM 3-32
CALC location mode

CALC user exit 7-9
CALC-key control block 7-11
CALC-key record control block 7-10

CALLER command 8-10
CCE

See central control element (CCE)
CCI communications services 3-5
CDMSLIB load library E-6
central control element (CCE) 2-59
central version operations

batch environment 1-10
description 1-7—1-11
teleprocessing environment 1-10

Central Versions
See CVs

CHKUSER TASKS, tuning 10-4
CICS applications, dynamic routing of 13-13
CICS systems

abort session program 5-30
DC/UCF operating environment 6-4—6-39
debugging 6-12, 6-23, 6-31
dispatch priority 6-36
distributed UCF applications 4-8—4-11
extended addressing considerations 6-38
IDMSCINL module 6-33—6-36
IDMSCINT module 6-15—6-18
IDMSINTC module 5-22, 6-5—6-15
IDMSINTL module 6-26—6-33
IDMSTRUE abend detection mechanism 6-6
INTCR141 module 6-18—6-25
startup 6-36
UCF front-end 5-22—5-34
UCF printer support 5-64—5-83

client/server communications model 3-4
Cloning CVs

defined 13-40
defining simulator lines 13-41
file requirements 13-41
how to 13-40—13-42
planning for 13-40
startup JCL requirements 13-41
system generation requirements 13-40
using with dynamic database session routing 13-11,

13-42
COBOL programs

COBOL II considerations 10-11
COBOL II support (OS/390) 2-10

X-2 CA-IDMS System Operations

COBOL programs (continued)
local mode operations 1-12

common system area (CSA)
CSA vector table 2-59
in DC/UCF region/partition 2-59

common work area (CWA) storage, system initialization
(exit 0) 7-64

communications architecture, description 3-4
compilers, CA-IDMS 1-15—1-18
COMREG storage allocation technique 2-40, 2-52, 2-53
Coupling Facility

requirements for dynamic database session
routing 13-15

shared cache requirements 13-7
ZIDMSCACHE0001 structure 13-7

cross-address space communication (VSE/ESA) B-4
CSA

See common system area (CSA)
CSVC

See SVC (CA-IDMS)
CSVCAREA

See SVC (CA-IDMS)
CULPRIT programs

BS2000/OSD systems 3-29
CV cloning

See Cloning CVs
CVs

See also Back-end CVs
See also Front-end CVs
assigning DBGroups 13-14
back-end CV definitions, dynamic database session

routing 13-12
cloning 13-40, 13-41—13-42
cloning file requirements 13-41
front-end CV definitions, dynamic database session

routing 13-13—13-15

D
data dictionary module, for emulated APPC

support 4-44
data services interface (DSI) 3-4
Data sharing
data streams

input data stream (exit 17) 7-69
output data stream (exit 18) 7-70

data transfer services (DTS) 3-4
database access, in interpartition communication 3-9
database management system

See DBMS

Database name table
adding DBGroups 13-14
defining DBGroups 13-12

Database resources, and dynamic database session
routing 13-16

database services 1-3
databases

DB exits 7-4—7-19
duplicate database files and user exits 7-11
performance issues 10-6
security (user exits) 7-67, 7-78
statistics and user exits 7-5, 7-13

Dataspace caching, and shared cache 13-7
DB exit 7-14
DB user exits 7-4—7-19
DBGROUP statement 13-12, 13-14
DBGroups

See also Groups
DBGROUP statement 13-12
defining to DBTABLE 13-12

DBMS
central version operations 1-7
local mode operations 1-12

DC
See also DC systems
UCF front-end 5-37—5-41

DC systems
communication with another DC system 3-6
description 1-4—1-5

DC/UCF log file
See system log

DC/UCF region/partition
layout 2-59—2-64
region map 2-7

DC/UCF shutdown
shutdown exit (exit 13) 7-67
system statistics (exit 9) 7-66

DC/UCF simulator facility F-3—F-31
changing simulator commands F-12
MAXTERM command F-16
PAUSE command F-16
SET command F-17
simulator input lines F-8
TERMINAL command F-19
TIME command F-20

DC/UCF startup routine
See also DC/UCF system startup
in DC/UCF region/partition 2-59
sample JCL (OS/390) 2-9
sample JCL (VM/ESA) 2-41
sample JCL (VSE/ESA) 2-16

Index X-3

DC/UCF startup routine (continued)
use at startup 2-54
WTOEXIT user exit 7-35
WTOREXIT user exit 7-43

DC/UCF system
See also system generation statements
components of 1-3
defining and generating 2-4
emulated APPC support 4-43—4-44
performance 10-3—10-26
real APPC support 4-41—4-43
system version number 2-7
TP monitors 1-11

DC/UCF system startup
See also DC/UCF startup routine
#DCPARM macro 2-6—2-8
BS2000/OSD systems 2-44—2-50
how storage is acquired 2-51—2-54
how the system is built 2-54—2-59
OS/390 systems 2-9—2-15
overrides (BS2000/OSD) 2-45
overrides (VSE/ESA) 2-39
startup events 2-57
VM/ESA systems 2-41—2-43
VSE/ESA systems 2-16—2-40

DC/UCF test environment E-3—E-11
DCMT DISPLAY commands

monitoring DBGroups 13-17
DCMT DISPLAY DBGROUP command 13-17
DCMT SET UCF command 5-38
DCUF SIMULATE command F-6
DCUF TEST command E-8
DDLCAT area

purpose 2-4
DDLCATLOD area

purpose 2-4
DDLCATX area

purpose 2-4
DDLDCLOD area

cleaned at startup 2-59
predefined run units 10-17
purpose 2-4

DDLDCLOG 13-41
DDLDCLOG area

See also system log
archiving 11-4
as system log 2-4, 11-3
examining logged information 9-32, 11-7
maintaining 11-4
WTOEXIT user exit 11-4

DDLDCMSG area
purpose 2-4

DDLDCMSG area, predefined run units 10-17
DDLDCQUE 13-41
DDLDCRUN area

cleaned at startup 2-59
predefined run units 10-17
purpose 2-4

DDLDCSCR 13-41
DDLDCSCR area

purpose 2-4
DDLDML area

purpose 2-4
DDLDML area, predefined run units 10-17
DDS systems

numbered exit 14 7-67
numbered exit 23 7-78
numbered exit 26 7-79
numbered exit 27 7-80

DDT
See destination definition table (DDT)

DEADLOCK DETECTION INTERVAL parameter,
tuning 10-4, 10-7

deadlock victim selection exit (exit 30) 7-83
deadlocks

deadlock manager (RHDCDEAD) 2-63
deadlock prevention element (DPE) 2-59
monitoring performance 10-7
preventing 10-14
victim selection exit (exit 30) 7-83

define-the-file (DTF) macros 2-28
destination definition table (DDT) 2-59
dialogs

collecting statistics 9-17—9-20
statistics checkpoint interval 9-18

dispatch priorities 6-36
distributed node services (DNS) 3-4
distributed UCF applications

batch systems 4-12
CICS systems 4-8—4-11
DC systems 4-6—4-8
IMS-DC systems 4-11—4-12
passing data 4-4
UTM systems 4-12—4-15

DMCL module
contents 2-4
in local mode operations 1-12
local mode use 1-12
named for central version use 2-7
purpose 1-8

X-4 CA-IDMS System Operations

DNS
See distributed node services (DNS)

DPE
See deadlocks

DSI
See data services interface (DSI)

DTF macros
See define-the-file (DTF) macros

DTS
See date transfer services (DTS)

dumps
See snap dumps

Dynamic database session routing
application considerations 13-15
back-end CV definitions 13-12
benefits 13-10
CV cloning requirements 13-42
database resources 13-16
defined 13-10
Exit 23, using to route applications 13-14, 13-15
front-end CV definitions 13-13—13-15
implementing 13-11—13-16
managing 13-16
monitoring and tuning 13-17—13-18
planning to use 13-11
shared cache, using with 13-11
using DBGroups 13-12—13-15

E
ECB

See event control block (ECB)
emulated APPC 4-40, 4-43—4-44
ENTER file (BS2000/OSD systems) 2-44
ERE

See external request element (ERE)
error reporting

#FREESTG violation 11-8
ERUS tasks

See also tasks
statistics collection 9-10
UCF communication 5-5

ESE
See external service element (ESE)

event control block (ECB)
ECBLIST (event control block list) 2-59

exception response protocol 10-26
EXEC PARM, for CV cloning 13-41
Exit 23, using with dynamic database session

routing 13-14, 13-15

Exit 24 7-79
parameters 7-79

Exit 34 7-86
Exit 35 7-87
Exit 36 7-88
Exit 37 7-88
Exit 38 7-89
exits

See numbered exits
See user exits

external request element (ERE) 2-59
ERE extension (OS/390) 3-34
ERE extension (VM/ESA) 3-45
used by IDMSSVCX 7-21

external request units 10-19
statistics 9-10

external service element (ESE) 2-59
EXTERNAL WAIT parameter

tuning 10-4

F
facsimile screens F-4
facsimile screens On the facsimile screen, a question

mark (?) F-7
file specifications (VSE/ESA), runtime overrides B-6
Files

assigning to shared cache 13-7
changing shared cache status 13-8
cloned CV requirements 13-41
estimating size for shared cache 13-7
journal 13-41

FREESTG parameter
defined 2-7
purpose 2-51

Front-end CVs
adding to resource name table 13-13
defining DBGroups 13-13
dynamic routing of non-DC clients 13-13
planning 13-11

G
GETVIS storage allocation technique 2-40, 2-52, 2-53
Global Deadlock Victim Selection Exit 7-88
Groups

adding to resource name table 13-13
changing status of 13-16
Coupling Facility requirements 13-15
DBGROUP statement 13-14
DCMT DISPLAY DBGROUP command 13-17

Index X-5

Groups (continued)
identifying on front-end CVs 13-13
managing dynamically 13-16

H
histograms 9-21—9-30

#HSTDEF macro 9-26—9-30
bins 9-21—9-23
classes 9-23—9-26
enabling statistics collection 9-26
overriding histogram defaults 9-26—9-30
RHDCHIST module 9-26

I
I/O operations

exception response protocol 10-26
input data stream (exit 17) 7-69
output data stream (exit 18) 7-70
SYSOUTL spooled output (exit 21) 7-76
terminal I/O errors (exit 12) 7-67

IDMS module
batch operations 1-9
local mode operations 1-12
purpose 1-9

IDMSAJNX user exit 7-5—7-9
IDMSBSVC module (BS2000/OSD)

defining 3-45
ERE extension 7-21

IDMSCALC routine 7-10
IDMSCINL 6-25—6-36

CICS interface 6-25—6-36
IDMSCINL module 6-33—6-36
IDMSCINT module 6-15—6-18
IDMSCLCX user exit 7-9—7-11
IDMSDBIO module

at startup 2-58
description 2-59
IDMSDPLX user exit 7-11
IDMSIOXT user exit 7-13
IDMSJNL2 user exit 7-18

IDMSDBMS module
at startup 2-58
description 2-59
IDMSCLCX user exit 7-9

IDMSDPLX user exit 7-11—7-13
IDMSDSVC phase 3-42
IDMSINTC 6-6

IDMSTRUE abend detection mechanism 6-6

IDMSINTC module (CICS)
assembly/link edit instructions 5-22
usage 6-5—6-38

IDMSINTL 6-25—6-36
IDMSINTL module (CICS)

usage 6-26
IDMSIOXT user exit 7-13
IDMSJNL2 user exit 7-18—7-19
IDMSLBLS procedure 2-33
IDMSOBS2

WTOEXIT user exit 7-35
WTOREXIT user exit 7-43

IDMSOPTI module
batch front-end 5-15
batch printer support 5-65
BS2000/OSD systems 3-26—3-30
description 1-9
IMS-DC front-end 5-42
IMS-DC printer support 5-72
OS/390 systems 3-10—3-14
TIAM front-end 5-45
TSO front-end 5-47
UTM front-end 5-51
VM/ESA front-end 5-34
VM/ESA systems 3-21—3-25
VSE/ESA systems 3-15—3-20

IDMSOS00 module
WTOEXIT user exit 7-36

IDMSSVCX user exit
coding the routine 7-21—7-27
for statistics collection 9-31
OS/390 requirements 3-34
VM/ESA requirements 3-45
VSE/ESA requirements 3-41, 3-42

IDMSTCM module (UTM), at run time 6-41
IDMSTRUE abend detection mechanism 6-6
IDMSUSVC module

specified at startup (OS/390) 2-9
IDMSUTIL module, IDMSCLCX user exit 7-9
IDMSVCTB phase 3-38, 3-42
IDSMIOX2 DB exit 7-14
ILE

See internal lock element (ILE)
IMS-DC systems

distributed UCF applications 4-11—4-12
printer front-end main task 5-72—5-73
printer front-end subtask 5-72, 5-73—5-74
PSB for front-end 5-44
PSB for printer front-end 5-74
UCF front-end 5-42—5-45
UCF printer support 5-72—5-74

X-6 CA-IDMS System Operations

INACTIVE INTERVAL parameter
tuning 10-4

input
See I/O operations

input data stream exit (exit 17) 7-69
INTCR141 module (CICS)

usage 6-18
interface module

See IDMS module
INTERNAL INTERVAL parameter, tuning 10-4
internal lock elements (ILEs), location in dumps 8-16,

8-17
interpartition communication

required components 1-8
setting up 3-3—3-45

J
JCL, startup for CV cloning 13-41
journal

control blocks 7-5, 7-19
transaction journaling (exit 18) 7-70

journal files 13-41
duplicate journal files and user exits 7-11, 7-18
record layouts 7-5

journaling parameters, tuning 10-6

L
LAPPCEMU line type 4-40

syntax 4-43
limits

See resource management
See resources

line driver modules, loaded at startup 2-59
LINE statement

for batch simulation F-13
for batch simulator files 2-17
for emulated APPC 4-43
for input/output files 2-17
for real APPC 4-42
LAPPCEMU line type 4-40, 4-43
VTAMLU line type 4-40

link pack area (LPA), eligible nucleus modules A-5
List structures

DBGroup requirements 13-15
shared cache requirements 13-7
sizing, for DBGroups 13-15
ZIDMSCACHE0001 13-7

LKM module 2-61

load lists 10-9—10-10
in a test environment E-6
program search strategy E-8
SYSLOAD load list E-8

load modules, erased at startup 2-59
local mode operations

description 1-7, 1-12
DMCL modules 1-12
WTOEXIT installation 7-36
WTOREXIT installation 7-43

LOCK LIMIT parameter, tuning 10-6
locking control blocks 2-61
log file

See system log
log full exit (exit 8) 7-66
logical terminal definition table (LTT) 2-59
logical unit 6.2 4-40

See also Systems Network Architecture
LPA

See link pack area (LPA)
LTERM statement

for batch simulation F-13
for emulated APPC 4-43
for real APPC 4-42

LTT
See logical terminal definition table (LTT)

LU 6.2
See logical unit 6.2

M
main startup module

See RHDCNTRY module
MASTER task

at startup 2-58
dispatched at startup 2-58

MAXIMUM CONCURRENT THREADS parameter,
tuning 10-15

MAXIMUM ERUS parameter
tuning 10-25

Maximum number of files A-4
MAXTASKS parameter, tuning 10-25
MAXTERM command F-16
messages

displayed at signon (exit 1) 7-64
responding to log messages 7-36
write-to-log exit (exit 7) 7-66

mode table entry
See VTAM mode table entry for real APPC

Monitoring
shared cache 13-8

Index X-7

monitoring system activity
new task exit (exit 4) 7-65
statistics exit (exit 9) 7-66
ticker interval exit (exit 10) 7-34
wait exit (exit 11) 7-34

MP support
See multitasking support

MPMODEs
assigned to numbered exits 7-52—7-54
assigning 8-10
purpose 8-9—8-10

MSP/EX systems
#SVCOPT macro 3-33—3-37

MT support
See multitasking support

multiprocessing
See multitasking support

multitasking support 8-8—8-19
#START macro for numbered exits 7-52—7-54
assigning subtasks 8-11
implementation (BS2000/OSD) 8-11
implementation (OS/390) 8-11
MPMODEs 8-9—8-10
numbered exit routines 7-52—7-54
performance considerations 8-14
snap dumps 8-15
user exit modes 8-13

N
name server table, description of 3-5
new task exit (exit 4) 7-65
NODE statement, identifying DBGroups 13-13, 13-14
NODE system generation statement 3-6
Non CA-IDMS/DC applications, dynamic routing

of 13-13
non-terminating task data transfer 4-15
nucleus modules

eligible for the LPA A-5
eligible for the SVA B-8
loaded at startup 2-59
reloading 2-65—2-67

numbered exits 7-49—7-85
calling conventions 7-50—7-55
execution modes 7-60
installing 7-56—7-60
multitasking support 7-52—7-54
system-invoked 7-62—7-85
user-invoked 7-55—7-56

O
online simulator F-4
OPER task

timer support for VSE/ESA B-7
operator's console, intercepting input (WTOREXIT exit)

operator 7-44
OPT

See startup options table (OPT)
OPTIQXIT user exit 7-31—7-33
OPTIXIT user exit 7-30—7-31
OS/390 JCL

#SVCOPT macro 3-37
batch front-end execution 5-19
batch front-end load module 5-16
batch print program 5-68
batch print support module 5-65
CICS abort session program 5-32
CICS front-end load module 5-27
DC front-end options macro 5-39
DC/UCF startup 2-9—2-15
for a DC/UCF test environment E-10
front-end table 5-13
IDMSOPTI module 3-14
IMS-DC front-end load module 5-44
IMS-DC front-end module PSB 5-44
IMS-DC printer front-end main task 5-73
IMS-DC printer front-end module PSB 5-74
IMS-DC printer front-end subtask 5-73
PSB for IMS-DC front-end 5-44
RHDCHIST module 9-28
RHDCUXIT 7-61
sample batch print program 5-71
sample batch print support module 5-71
system table 5-60
TSO front-end load module 5-50
UDAS CICS front-end program assembly 4-25

OS/390 systems
See also multitasking support
See also OS/390 XA systems
#SVCOPT macro 3-33—3-37
DC/UCF startup 2-9—2-15
DC/UCF system storage acquisition 2-52
page fencing A-5
RHDCOMVS module 2-9
running nonswappable A-5

OS/390 XA systems
See OS/390 systems
See XA support

output
See I/O operations

X-8 CA-IDMS System Operations

output data stream exit (exit 18) 7-70

P
PAPPCEMU physical terminal type 4-43
PAUSE command F-16
PDT

See programs
Performance considerations A-5
Performance Monitor

dynamic database session routing statistics 13-17
pg=start.Data sharing
physical terminal definition table (PTT) 2-59
PL/I programs, BS2000/OSD systems 3-29
PLOG

See PRINT LOG utility
postprocessing exit (exit 29) 7-82
predefined run units, performance considerations 10-17
preprocessing exit (exit 28) 7-81
PRINT LOG utility

examining logged information 9-32, 11-7
invoking (exit 8) 7-66
reporting on the DDLDCLOG area 11-4
sample log report 2-57

printers
default UCF print class/destinations 5-64
security and routing (exit 22) 7-77
SYSOUTL reports (exit 21) 7-76
UCF printer support 5-64—5-83
write printer exit (exit 16) 7-69

processing, distributed 3-6
Program loader exit (exit 33) 7-85
program pools

See also reentrant pools
alternate 8-5
built at startup 2-59
performance considerations 10-11—10-13
primary 8-5
XA usage 8-5

PROGRAM statement, for emulated APPC 4-44
programs

definition to a DC/UCF system E-6
execution in a test environment E-3
execution under VM/ESA XA 8-4
execution under BS2000/OSD XA 8-4
execution under OS/390 XA 8-4
execution under XA 8-7
in the DDLDCLOD area E-5
load lists 10-9—10-10
loading efficiency 10-8—10-10
program definition table (PDT) 2-59

programs (continued)
storage protection E-5
variable storage for statistics 9-16

protect key, primary 3-35
PTERM statement 5-75

for batch simulation F-13
for emulated APPC 4-43
for real APPC 4-41, 4-42
PAPPCEMU physical terminal type 4-43

PTT
See physical terminal definition table (PTT)

Q
QDT

See queues
queues

See also DDLDCRUN area
erased at startup 2-59
queue definition table (QDT) 2-59

Quiesce Area Exit 7-89

R
RCA

See resources
RCE

See resources
real APPC 4-40, 4-41—4-43
Recovery Wait Exit 7-88
reentrant pools

See also program pools
performance considerations 10-11—10-13
reentrant programs loaded at startup 2-59

report security and routing exit (exit 22) 7-77
reports

modifying the report request block (RRB) 7-69
printing 5-65
security and routing (exit 22) 7-77
SYSOUTL reports (exit 21) 7-76
write printer exit (exit 16) 7-69

resident programs, loaded at startup 2-59
resource limit exit (exit 20) 7-73
Resource name table

adding DBGroups 13-13
displaying DBGroups 13-17

RESOURCE TABLE system generation statement 3-6
resources

limits 10-14—10-16
limits and exit 20 7-73
management 10-3—10-16

Index X-9

resources (continued)
resource control area (RCA) 2-59
resource control element (RCE) 2-59
resource link element (RLE) 2-59
RESOURCE TIMEOUT INTERVAL 10-4

RHDCCLOD module, executed at startup 2-59
RHDCCSA module 2-58
RHDCFTAB phase (VSE/ESA)

See also #DVFILE macros
creating 2-32—2-33
source file 2-20

RHDCHIST module
generating 9-28—9-30
purpose 9-26

RHDCNTRY module
at startup 2-57—2-58
purpose 2-59

RHDCOCMS
WTOEXIT user exit 7-35
WTOREXIT user exit 7-43

RHDCOMVS
WTOEXIT user exit 7-35
WTOREXIT user exit 7-43

RHDCOMVS module (OS/390)
specified at startup 2-9

RHDCPARM macro
BS2000/OSD systems 2-44

RHDCPARM phase
See also #DCPARM macro
creating 2-16—2-17
purpose 2-16

RHDCQUED module, executed at startup 2-59
RHDCSTXA module, purpose 2-59
RHDCUCFC module 5-6
RHDCUXFT program 4-5
RHDCUXIT module 7-56—7-60
RHDCWAIT routine, at startup 2-58
RLE

See resources
RMODE

See XA support
RUA

See system run units
run unit exit (exit 14) 7-67
run units

See also predefined run units
modifying parameters for 7-78
security checking for 7-67

RUNAWAY INTERVAL parameter
tuning 10-4

RUNUNITS specification
purpose 10-17

S
SCA

See subtask control area (SCA)
SCE

See storage pools
SCT

See storage pools
security

areas (user exits) 7-67
databases (user exits) 7-67, 7-78
postprocessing exit (exit 29) 7-82
preprocessing exit (exit 28) 7-81
user signon information 7-64—7-65

sequential log files
See also system log
alternate log files 11-5, 11-6
archiving 11-5
BS2000/OSD considerations 2-8
examining statistics 9-32
maintaining 11-5—11-6
single log file 11-6
VSE/ESA considerations 2-27—2-32

service driver modules
loaded at startup 2-59
purpose 2-59

SET command F-17
Shared cache

and XA storage 13-4
assigning files to 13-7
benefits 13-4
changing status of 13-8
deciding to use 13-6
defined 13-3
implementing 13-7
increasing size of 13-9
monitoring 13-8—13-9
multiple 13-6, 13-8
sizing 13-7
tuning 13-8

shared virtual area (SVA)
eligible nucleus modules B-8
for cross-address space communication B-4

shutdown
See DC/UCF shutdown

shutdown exit (exit 13) 7-67
signoff exit (exit 2) 7-65

X-10 CA-IDMS System Operations

signon
displaying messages (exit 1) 7-64
signon element (SON) 7-64
signon exit (exit 1) 7-64

Simulator lines, defining for CV cloning 13-41
site-written programs

CICS considerations 6-38
COBOL considerations 1-12
distributed UCF applications 4-3—4-15
multitasking support 8-12—8-13
UTM considerations 6-41

Sizing
list structures for DBGroups 13-15
shared cache 13-7, 13-9

SNA
See Systems Network Architecture

SNA character string device 5-11
SNA support, functional management header 7-70, 7-71
snap dumps

BS2000/OSD multitasking systems 8-17
issuing snaps 11-9
OS/390 multitasking systems 8-15—8-17
written to the log 11-8

SON
See signon

SREPORTs 9-21, 9-32—9-33
Stalled Task Information Exit 7-87
Startup JCL, defining for CV cloning 13-41
startup options table (OPT) 2-59
Static routing 13-10
statistics

dialog 9-17—9-20
examining 7-68, 9-32—9-33
external request units 9-10—9-13
histograms 9-21—9-26
on DBGroups 13-17
reports 9-32—9-33
system statistics (exit 9) 7-66
system-wide 9-4—9-9
task statistics 9-10—9-13
task statistics (exit 6) 7-66
transaction 9-14—9-16
transaction statistics (exit 31) 7-84
user exits for 9-31

storage pools
allocating storage 10-22
built at startup 2-59
OS/390 XA usage 8-6
performance considerations 10-21—10-24
primary 10-21
scanning 10-22

storage pools (continued)
secondary 10-21
storage control element (SCE) 2-59
storage control table (SCT) 2-59

storage protection E-5
storage violation 11-8
subschemas

in a test environment E-5
subschema tables 1-8

subtask control area (SCA)
location in dumps 8-15, 8-17

subtasks
See multitasking support

supervisor call routine
See SVC (CA-IDMS)

SUSPEND task 5-5
SVA B-8
SVC (CA-IDMS)

BS2000/OSD systems 3-45
common SVC element (CSVC) 2-59
description 1-8
ERE extension 7-21
IDMSSVCX user exit 7-27
in communications architecture 3-5
OS/390 systems 3-32—3-38
purpose 3-8
SVC parameter area (CSVCAREA) 2-59
VM/ESA systems 3-44—3-45
VSE/ESA systems 3-38—3-43

SYSCTL file
BS2000/OSD systems 3-31
OS/390 systems 3-14—3-15
purpose 1-9
VM/ESA systems 3-25—3-26
VSE/ESA systems 3-20—3-21

SYSIDMS parameter file
used for interpartition communication 1-10
VSE/ESA file specifications B-6

SYSIN files
defining for VSE/ESA 2-27

SYSIN files, defining for VSE/ESA 2-21
SYSLOAD load list E-8
SYSLOCKS parameter

tuning 10-6, 10-15
SYSOUT files, defining for VSE/ESA 2-27
SYSOUTL detail record exit (exit 32) 7-85
SYSOUTL report termination exit (exit 21) 7-76
System generation

cloning CVs 13-40
defining DBGroups on NODE statement 13-13,

13-14

Index X-11

system generation statements
for a test environment E-10
for batch simulation F-13
for emulated APPC 4-43, 4-44
for real APPC 4-41
for VSE/ESA system generation 2-19
task definition 4-44
to implement DC-to-DC communication 3-6

system initialization exit (exit 0) 7-64
system log

See also DDLDCLOG area
See also sequential log files
examining statistics 9-32
for dialog statistics 9-18
for transaction statistics 9-16
information on errors 11-8—11-9
offloading the log (exit 8) 7-66
purpose 11-3
responding to messages 7-36
startup messages written to the log 2-54
statistics written 9-11
write-to-log exit (exit 7) 7-66

system mode execution
exit routines at OS/390 multitasking sites 8-13
numbered exits 7-60

system performance 10-3—10-26
abend detection 10-4—10-5
multitasking considerations 8-14
OS/390 considerations A-5—A-6
resource management 10-3—10-16
task management 10-25

system run units 10-17
internal run-unit table (RUA) 2-59

system statistics exit (exit 9) 7-66, 9-31
system tasks

MASTER task 2-58
OPER task B-7

system trace area (TRC) 2-59
Systems Network Architecture 4-40

logical unit for real APPC 4-41—4-42

T
task codes, alternate 10-20
TASK statement

for emulated APPC 4-44
task statistics

enabling collection of 9-10
task termination exit (exit 5) 7-65, 9-31
task termination exit (exit 6) 7-66, 9-31

tasks
definition of a task 9-10
ERUS, setting limits 10-15
limits on resource usage 10-14—10-16
managing resources for 10-14
maximum number available 10-25
monitoring system tasks (exit 11) 7-34
monitoring tasks (exit 4) 7-65
online, setting limits 10-15
statistics 9-10—9-13
task control area (TCA) 2-59
task definition table (TDT) 2-59
task statistics exits 7-65, 7-66
TCE stack 7-12
terminal I/O errors (exit 12) 7-67

TCA
See tasks

TCKREXIT user exit 7-34
TDT

See tasks
teleprocessing services 1-3, 1-4
TERMINAL command F-19
terminal I/O error exit (exit 12) 7-67
Terminal simulation (3270-type) F-3—F-31
terminals

asynchronous terminal connection (exit 19) 7-72
exception response protocol 10-26
terminal I/O errors (exit 12) 7-67

terminating task data transfer 4-3
test environment

See also DC/UCF test environment
example of The following example illustrates the

establishment of a E-10
test facility E-8
TIAM UCF front-end 5-45—5-47
TICKER INTERVAL parameter

ticker interval exit (exit 10) 7-34
tuning 10-4

TIME command F-20
timed functions 10-4

timer support for VSE/ESA B-7
TP monitors

CICS 6-4—6-39
interface modules 1-10
operating considerations 6-3—6-41
UTM 6-40—6-41

transaction
database recovery on abort 1-7
definition 9-14

transaction statistics 9-14—9-16
enabling collection of 9-14

X-12 CA-IDMS System Operations

transaction statistics exit (exit 31) 7-84, 9-31
TRC

See system trace area (TRC)
TSO UCF front-end 5-47
TTY terminal, 3270 simulation F-3
Tuning

shared cache 13-8

U
UCF

See UCF systems
UCF back-end system 5-3, 5-4, 5-57—5-62
UCF distributed application support (UDAS)

calling conventions 4-28
description 4-16

UCF front-end system 5-3, 5-4, 5-5—5-6
batch 5-6, 5-14—5-72
CICS 5-22—5-34
components 5-6
DC 5-37—5-41
dedicated mode 5-5, 5-6
identifier 5-7
IDMSOPTI module 5-15, 5-34, 5-45, 5-47, 5-51,

5-65
IMS-DC 5-42—5-45
intermittent mode 5-5
sample 5-12
TIAM 5-45—5-47
TSO 5-6, 5-47
UTM 5-50—5-56
VM/ESA 5-34—5-37

UCF front-end table 5-7—5-14
UCF front-end terminal 5-6, 5-7
UCF printer support

batch 5-15, 5-65—5-72
example, batch 5-70—5-72
IMS-DC 5-72—5-74
with CICS 5-30

UCF system table 5-57, 5-59
UCF systems 5-3—5-63

back-end system 1-6
default print classes 5-64
description 1-5—1-6
distributed UCF applications 4-3—4-15
host TP monitor 1-5
line driver module 2-59
printer support 5-64—5-83
RHDCUXFT program 4-5
system generation statements 5-63
TP monitors supported 1-5

UCFDESPL program
UCFPRINT program
UDAS

See UCF distributed application support (UDAS)
Universal Communications Facility

See UCF systems
Unqualified Dbkey Find/Obtain Exit 7-86
UPSI byte (VSE/ESA) 3-17
user exit 15 9-31
user exit 23 3-9
user exit 31 9-31
user exit 5 9-31
user exit 6 9-31
user exit 9 9-31
user exits 7-3—7-85

See also numbered exits
CICS UCF print exit 5-74—5-80
for multitasking 8-13
IDMSAJNX 7-5—7-9
IDMSCLCX 7-9—7-11
IDMSDPLX 7-11—7-13
IDMSIOXT 7-13
IDMSJNL2 7-18—7-19
IDMSSVCX 3-34, 3-45, 7-21—7-27
OPTIQXIT 7-31—7-33
OPTIXIT 7-30—7-31
TCKREXIT 7-34
WAITEXIT 7-34
WTOEXIT 7-35—7-43
WTOREXIT 7-43—7-48

user mode execution
multitasking support 8-13
numbered exits 7-60

users
billing usage (exit 2) 7-65
security (exit 1) 7-64
signon/signoff exits 7-64—7-65

utilities, CA-IDMS 1-15—1-18
UTM systems

distributed UCF applications 4-12—4-15
format-exit module 5-51
front-end module 5-50
IDMSTCM module 6-41
operating considerations 6-40—6-41
shutdown module 5-51
startup 6-41
UCF front-end 5-50—5-56

Index X-13

V
VIB statistics exit (exit 15) 7-68, 9-31
virtual machine command facility (VMCF) 3-34
VM/ESA commands

#UCFCMS assembly 5-36
batch front-end execution 5-20
batch front-end load module 5-17
batch print program 5-69
batch print support module 5-66
DC front-end load module 5-40
DC/UCF startup 2-42—2-43
for a DC/UCF test environment E-10
front-end table 5-14
IDMSOPTI module 3-25
RHDCHIST module 9-29
system table 5-61
VM/ESA front-end load module 5-37

VM/ESA JCL
RHDCUXIT 7-62

VM/ESA systems C-3—C-5
See also VM/ESA commands
See also XA support
See also XA systems
central version operations C-3—C-4
compiling programs C-5
DC/UCF startup 2-41—2-43
DC/UCF system storage acquisition 2-53
IDMSSVCX user exit 3-45
IDMSUSVC module 3-44
IDMSVMCF module 3-44
report routing (exit 21) 7-76
special considerations C-3—C-5

VM/ESA UCF front-end 5-34—5-37
VM/ESA XA systems

See also VM/ESA systems
program execution 8-4

VMCF
See virtual machine command facility (VMCF)

VSE/ESA JCL
batch front-end execution 5-20
batch front-end load module 5-17
batch print program 5-68
batch print support module 5-66
CICS abort session program 5-32
CICS front-end load module 5-28
DC front-end load module 5-39
DC/UCF startup 2-40
DC/UCF system startup 2-33
for a DC/UCF test environment E-10
front-end table 5-13

VSE/ESA JCL (continued)
IDMSDSVC phase 3-42
IDMSLBLS procedure 2-33
IDMSOPTI module 3-19
IDMSVCTB phase 3-42
RHDCFTAB phase 2-32
RHDCHIST module 9-28
RHDCPARM phase 2-16
RHDCUXIT 7-61
system table 5-60

VSE/ESA systems
cross-address space communication B-4
DC/UCF startup 2-16—2-40
DC/UCF system storage acquisition 2-52
defining files 2-17—2-33
IDMSDSVC phase 3-42
IDMSVCTB phase 3-42
job accounting support B-7
runtime overrides B-6
storage allocation techniques 2-40
storage considerations B-5
UPSI byte 3-17

VTAM
See exception response protocol

VTAM mode table entry for real APPC
parameter requirements 4-42
sample 4-43

VTAMLU line type 4-40

W
WAITEXIT user exit 7-34
warmstart, performed at DC/UCF startup 2-58
Windows applications, dynamic routing of 13-13
write printer exit (exit 16) 7-69
write-to-log exit (exit 7) 7-66
WTOEXIT user exit

for system log archiving 11-4
usage 7-35—7-43
WTO message control block 7-36—7-37

WTOREXIT user exit
usage 7-43—7-48
WTOR reply area 7-44—7-45

X
XA storage

and shared cache 13-4
XA support

See also OS/390 systems
See also OS/390 XA systems

X-14 CA-IDMS System Operations

XA support (continued)
See also XA systems
addressing mode (AMODE) 8-4
for CICS 6-38
pools built at startup time 2-59
program pools 8-5, 10-11—10-13
reentrant pools 10-11—10-13
residency mode (RMODE) 8-4
startup module (RHDCSTXA) 2-59
storage pools 8-6, 10-21—10-24
XA load buffer 2-59

XA systems, program execution 8-4—8-7
XALODBUF buffer 2-59

Y
Year 2000 testing 7-79

Index X-15

	CA-IDMS System Operations
	Contents
	How to use this manual
	What this manual contains
	How product names are referenced
	Who should use this manual
	Related documentation
	Understanding syntax diagrams
	Sample syntax diagram

	Chapter 1. Introduction
	1.1 Overview
	1.2 DC/ UCF teleprocessing services
	1.2.1 DC systems
	1.2.2 UCF systems

	1.3 CA- IDMS database services
	1.3.1 Central version operations
	1.3.1.1 Components of central version operations
	1.3.1.2 Batch operations
	1.3.1.3 Teleprocessing operations

	1.3.2 Local mode operations

	1.4 Online software components
	1.5 CA- IDMS batch compilers and utilities

	Chapter 2. System Startup
	2.1 Overview
	2.2 Preparatory steps
	2.2.1 Defining and generating the DC/ UCF system
	2.2.2 Defining dictionaries and databases
	2.2.3 Coding a # DCPARM macro

	2.3 System startup under OS/ 390
	2.3.1 Step 1: Link edit the startup routine
	2.3.2 Step 2: Execute the startup routine

	2.4 System startup under VSE/ ESA
	2.4.1 Step 1: Create an RHDCPARM phase
	2.4.2 Step 2: Code # DVFILE macros
	2.4.2.1 Format 1 # DVFILE macro
	2.4.2.2 Format 2 # DVFILE macro
	2.4.2.3 Format 3 # DVFILE macro

	2.4.3 Step 3: Create an RHDCFTAB module
	2.4.4 Step 4: Execute the startup routine

	2.5 System startup under VM/ ESA
	2.5.1 Step 1: Assemble the # DCPARM macro
	2.5.2 Step 2: Assemble the # SVCOPT macro
	2.5.3 Step 3: Link edit the startup routine
	2.5.4 Step 4: Execute the startup routine

	2.6 System startup under BS2000/ OSD
	2.6.1 Step 1: Customize RHDCPARM
	2.6.2 Step 2: Create an ENTER file
	2.6.3 Step 3: Update the FILE procedure
	2.6.4 Step 4. Submit the job

	2.7 What happens during startup
	2.7.1 How the startup routine acquires storage
	2.7.2 How the system is built
	2.7.3 The DC/ UCF region/ partition layout

	2.8 Dynamically reloading nucleus modules

	Chapter 3. Setting Up Interpartition Communication and the SVC
	3.1 Overview
	3.2 Communications architecture
	3.3 DC- to- DC communications
	3.4 Batch and non- DC/ UCF programs
	3.4.1 OS/ 390
	3.4.1.1 Generating an IDMSOPTI module
	3.4.1.2 Defining a SYSCTL file

	3.4.2 VSE/ ESA
	3.4.2.1 Generating an IDMSOPTI module
	3.4.2.2 Defining a SYSCTL file

	3.4.3 VM/ ESA
	3.4.3.1 Generating an IDMSOPTI module
	3.4.3.2 Defining a SYSCTL file
	3.4.3.3 Using SYSIDMS to access the correct CV

	3.4.4 BS2000/ OSD
	3.4.4.1 Generating an IDMSOPTI module
	3.4.4.2 Defining a SYSCTL File

	3.5 Generating the SVC
	3.5.1 OS/ 390 and MSP/ EX
	3.5.2 VSE/ ESA
	3.5.3 VM/ ESA
	3.5.4 BS2000/ OSD

	Chapter 4. Distributed Applications Using UCF or APPC
	4.1 UCF programs
	4.1.1 Terminating task data transfer
	4.1.1.1 How UCF transfers control and data
	4.1.1.2 DC back- end
	4.1.1.3 DC front- end
	4.1.1.4 CICS front- end
	4.1.1.5 IMS- DC front- end
	4.1.1.6 UTM front- end

	4.1.2 Non- terminating task data transfer
	4.1.2.1 Flow of control
	4.1.2.2 CICS front- end
	4.1.2.3 Batch and IMS- DC front- ends
	4.1.2.4 Accessing a UDAS front- end from a COBOL program

	4.2 Advanced- program- to- program communications
	4.2.1 Real APPC
	4.2.2 Emulated APPC

	Chapter 5. UCF Operations
	5.1 Overview
	5.2 UCF front- end
	5.2.1 Front- end table
	5.2.1.1 # UCFUFT macro
	5.2.1.2 # UCFUTD macro
	5.2.1.3 # UCFDEND macro
	5.2.1.4 Sample front- end table definition
	5.2.1.5 Front- end table JCL

	5.2.2 Batch front- end
	5.2.2.1 Front- end load module assembly JCL
	5.2.2.2 Batch front- end execution
	5.2.2.3 Batch front- end execution JCL
	5.2.2.4 Setting options for batch UCF program execution

	5.2.3 CICS front- end
	5.2.3.1 CICS front- end JCL
	5.2.3.2 CICS front- end execution

	5.2.4 CICS abort session program
	5.2.4.1 # UCFCICZ macro
	5.2.4.2 How to use the UCF CICS abort session program

	5.2.5 VM/ ESA front- end
	5.2.6 DC front- end
	5.2.6.1 Assembly JCL
	5.2.6.2 DC front- end execution

	5.2.7 IMS- DC front- end
	5.2.7.1 Assembly JCL
	5.2.7.2 IMS- DC front- end execution

	5.2.8 TIAM front- end
	5.2.9 TSO front- end
	5.2.10 UTM front- end
	5.2.10.1 Assembly JCL
	5.2.10.2 Load module JCL
	5.2.10.3 UTM front- end execution

	5.3 UCF back- end
	5.3.1 # FESTDEF macro
	5.3.2 # FESTENT macro
	5.3.3 Sample system table definition
	5.3.4 System table JCL

	5.4 UCF system generation statements
	5.5 Printer support
	5.5.1 Batch printer support
	5.5.1.1 Assembly JCL
	5.5.1.2 Batch program execution

	5.5.2 Printer support for IMS- DC
	5.5.2.1 Main task assembly JCL
	5.5.2.2 Subtask assembly JCL
	5.5.2.3 Executing the printer front- end

	5.5.3 Printer support for DC and CICS
	5.5.3.1 Defining and starting UCF printer support
	5.5.3.2 Special CICS considerations

	Chapter 6. TP- Monitor Considerations
	6.1 Overview
	6.2 CICS systems
	6.2.1 Standard CICS interface
	6.2.1.1 CICSOPT
	6.2.1.2 IDMSINTC
	6.2.1.3 IDMSCINT

	6.2.2 INTCR141
	6.2.3 IDMSINTL and IDMSCINL CICS interface macros
	6.2.3.1 IDMSINTL
	6.2.3.2 IDMSCINL

	6.2.4 DC/ UCF execution mode in the CICS environment
	6.2.5 Running multiple CICS or DC/ UCF systems
	6.2.6 Components of the CICS and DC/ UCF environment
	6.2.7 CICS extended addressing considerations
	6.2.8 What happens when a CA- IDMS instruction is executed
	6.2.9 Using the various CICS interfaces
	6.2.10 CICS storage protection with IDMSINTC and IDMSINTL
	6.2.10.1 CICS setup procedures
	6.2.10.2 CA- IDMS/ DC/ UCF setup procedures

	6.3 UTM Systems
	6.3.1 DC/ UCF execution modes in the UTM environment
	6.3.2 IDMSTCM module

	Chapter 7. User Exits
	7.1 Overview
	7.2 DB exits
	7.2.1 IDMSAJNX
	7.2.2 IDMSCLCX
	7.2.3 IDMSDPLX
	7.2.4 IDMSIOXT
	7.2.5 IDMSIOX2
	7.2.6 IDMSJNL2

	7.3 DC/ UCF exits
	7.3.1 IDMSSVCX
	7.3.1.1 IDMSSVCX examples
	7.3.1.2 Steps to add IDMSSVCX to your system

	7.3.2 OPTIXIT
	7.3.3 OPTIQXIT
	7.3.4 TCKREXIT
	7.3.5 WAITEXIT
	7.3.6 WTOEXIT
	7.3.7 WTOREXIT

	7.4 Numbered exits
	7.4.1 Calling conventions for numbered exits
	7.4.2 Macros required for DC/ UCF calling conventions
	7.4.2.1 # MOPT macro
	7.4.2.2 # START macro
	7.4.2.3 # RTN macro
	7.4.2.4 # GETSTK macro

	7.4.3 User- invoked numbered exits
	7.4.4 Installing numbered exits in the system
	7.4.4.1 Step 1: Code a # DEFXIT macro
	7.4.4.2 Step 2: Assemble and link edit the RHDCUXIT module

	7.4.5 System- invoked numbered exits
	7.4.5.1 Exit 0 Š System Initialization Exit
	7.4.5.2 Exit 1 Š Signon Exit
	7.4.5.3 Exit 2 Š Signoff Exit
	7.4.5.4 Exit 4 Š New Task Exit
	7.4.5.5 Exit 5 Š Task Termination Exit I
	7.4.5.6 Exit 6 Š Task Termination Exit II
	7.4.5.7 Exit 7 Š Write- to- Log Exit
	7.4.5.8 Exit 8 Š Log Full Exit
	7.4.5.9 Exit 9 Š System Statistics Exit
	7.4.5.10 Exit 12 Š Terminal I/ O Error Exit
	7.4.5.11 Exit 13 Š Shutdown Exit
	7.4.5.12 Exit 14 Š BIND RUN UNIT and READY AREA Exit
	7.4.5.13 Exit 15 Š VIB Statistics Exit
	7.4.5.14 Exit 16 Š Write Printer Exit
	7.4.5.15 Exit 17 Š Input Data Stream Exit
	7.4.5.16 Exit 18 Š Output Data Stream Exit
	7.4.5.17 Exit 19 Š Asynchronous Terminal Connection Exit
	7.4.5.18 Exit 20 Š Resource Limit Exit
	7.4.5.19 Exit 21 Š SYSOUTL Report Termination Exit
	7.4.5.20 Exit 22 Š Report Security and Routing Exit
	7.4.5.21 Exit 23 Š Pre- BIND RUN UNIT Exit
	7.4.5.22 Exit 24 Š GET TIME Exit
	7.4.5.23 Exit 26 Š OLQ JCL exit
	7.4.5.24 Exit 27 Š Examining the ERE Extension Exit
	7.4.5.25 Exit 28 Š Security Preprocessing Exit
	7.4.5.26 Exit 29 Š Security Postprocessing Exit
	7.4.5.27 Exit 30 Š Deadlock Victim Selection Exit
	7.4.5.28 Exit 31 Š Transaction Statistics Exit
	7.4.5.29 Exit 32 Š SYSOUTL Detail Record Exit
	7.4.5.30 Exit 33 Š Program Loader Exit
	7.4.5.31 Exit 34 Š Unqualified Dbkey FIND/ OBTAIN Exit
	7.4.5.32 Exit 35 Š Stalled Task Information Exit
	7.4.5.33 Exit 36 - Global Deadlock Victim Selection Exit
	7.4.5.34 Exit 37 - Recovery Wait Exit
	7.4.5.35 Exit 38 - Quiesce Area Exit

	Chapter 8. Extended Addressing and Multitasking
	8.1 About this chapter
	8.2 Extended addressing considerations
	8.2.1 AMODE and RMODE assignment
	8.2.2 Program pool usage
	8.2.3 Storage pool usage
	8.2.4 Treatment of dynamically- built control blocks

	8.3 Multitasking support
	8.3.1 How DC handles concurrency
	8.3.2 How to implement OS/ 390 multitasking
	8.3.3 How to implement BS2000/ OSD multitasking
	8.3.4 Coding considerations
	8.3.5 Monitoring multitasking performance
	8.3.6 Multitasking information in dumps
	8.3.6.1 OS/ 390
	8.3.6.2 BS2000/ OSD

	8.3.7 Routing system snaps to a sequential file

	Chapter 9. Statistics
	9.1 Overview
	9.2 System- wide statistics
	9.2.1 When system- wide statistics are written
	9.2.2 Categories of statistics

	9.3 Task and external request unit statistics
	9.3.1 Enabling statistics collection
	9.3.2 How statistics accumulate at run time
	9.3.2.1 DC/ UCF statistics collected
	9.3.2.2 Non- SQL DB statistics
	9.3.2.3 SQL DB statistics

	9.4 Transaction statistics
	9.4.1 Enabling statistics collection
	9.4.2 How statistics accumulate at run time

	9.5 CA- ADS dialog statistics
	9.5.1 Enabling statistics collection
	9.5.2 How statistics accumulate at run time
	9.5.3 Categories of CA- ADS statistics

	9.6 Histograms
	9.6.1 Overview of histograms
	9.6.2 How histograms accumulate at run time
	9.6.3 System- wide histograms
	9.6.4 Task histograms
	9.6.5 Line histograms
	9.6.6 Overriding histogram defaults
	9.6.6.1 Coding # HSTDEF macros
	9.6.6.2 Creating the RHDCHIST module

	9.7 User- written statistics support
	9.8 Examining statistics
	9.8.1 Current run- time statistics
	9.8.2 Logged statistics

	Chapter 10. System Performance
	10.1 Overview
	10.2 Abend detection and timed functions
	10.2.1 Run- time events that cause abends
	10.2.2 Mechanisms that detect abnormal processing

	10.3 Database operations
	10.4 Deadlock detector performance management
	10.5 Program loading
	10.5.1 General strategies
	10.5.2 Defining load lists

	10.6 Program pools
	10.6.1 Types of program pool
	10.6.2 Run- time performance considerations

	10.7 Resource management
	10.7.1 Task resource and deadlock management
	10.7.2 Resource limits

	10.8 System run units
	10.9 External request units
	10.10 Storage pools
	10.10.1 Contents of storage pools
	10.10.2 How the system allocates storage in storage pools
	10.10.3 Run- time performance considerations

	10.11 Tasks
	10.12 Terminal exception response protocol

	Chapter 11. The System Log
	11.1 Overview
	11.2 Maintaining the system log
	11.2.1 Database log (DDLDCLOG area)
	11.2.2 Sequential log files

	11.3 Accessing logged information
	11.4 How the system logs errors

	Chapter 12. Applying Optional Functionality
	12.1 Overview
	12.2 Creating an RHDCOPTF module
	12.2.1 # DEFOPTF macro
	12.2.2 Example

	Chapter 13. CA- IDMS in a Sysplex Environment
	13.1 Using Shared Cache
	13.1.1 Overview
	13.1.2 About shared cache
	13.1.3 Deciding to use shared cache
	13.1.4 Implementing shared cache
	13.1.4.1 Defining shared cache to the Coupling Facility
	13.1.4.2 Defining shared cache in CA- IDMS

	13.1.5 Monitoring shared cache
	13.1.6 Tuning a shared cache
	13.1.6.1 What you can do

	13.2 Using Dynamic Database Session Routing
	13.2.1 Overview
	13.2.2 About dynamic database session routing
	13.2.3 Planning to use dynamic database session routing
	13.2.4 Implementing dynamic database session routing
	13.2.4.1 Using DBGroups
	13.2.4.2 Back- end CV definitions
	13.2.4.3 Front- end CV definitions
	13.2.4.4 How dynamic database session routing works
	13.2.4.5 Coupling Facility considerations
	13.2.4.6 Application considerations

	13.2.5 Managing dynamic database session routing
	13.2.6 Monitoring and tuning dynamic database session routing

	13.3 Data Sharing
	13.3.1 Overview
	13.3.2 Data sharing groups
	13.3.3 Designing Data Sharing Groups
	13.3.3.1 Types of Groups
	13.3.3.2 Data Sharing Group Versus DBGroup

	13.3.4 Defining Data Sharing Groups
	13.3.4.1 Selecting a Group Name
	13.3.4.2 Configuring the Coupling Facility
	13.3.4.3 Specifying Group Membership

	13.3.5 Sharing Update Access to Data
	13.3.5.1 Shared Area Requirements
	13.3.5.2 Notify Locking Considerations
	13.3.5.3 Enabling Data Sharing
	13.3.5.4 Altering the DMCL Definition

	13.3.6 Member Failure
	13.3.7 Coupling Facility Failures
	13.3.8 Group Restart
	13.3.9 Accessing Unrecovered Data
	13.3.10 Sharing Queues and Enqueued Resources
	13.3.10.1 Sharing Queues
	13.3.10.2 Sharing Enqueued Resources

	13.3.11 Monitoring Data Sharing Groups
	13.3.11.1 Monitoring Through DCMT Commands
	13.3.11.2 Monitoring Through Performance Monitor
	13.3.11.3 Monitoring Through Journal Reports

	13.4 CV Cloning
	13.4.1 Overview
	13.4.2 About CV cloning
	13.4.3 Planning CV cloning
	13.4.4 Implementing CV cloning
	13.4.4.1 System definition requirements
	13.4.4.2 Special file requirements for CV clones
	13.4.4.3 System start up JCL requirements
	13.4.4.4 Using CV clones with dynamic database session routing
	13.4.4.5 Using CV clones with data sharing

	Appendix A. OS/ 390 Performance Considerations
	A. 1 Overview
	A. 2 Maximum number of files
	A. 3 Performance considerations

	Appendix B. VSE/ ESA Considerations
	B. 1 Overview
	B. 2 Cross- address space communication
	B. 3 Storage considerations for the batch external interface
	B. 4 Overriding VSE/ ESA file specifications at run time
	B. 5 Implementing VSE/ ESA job accounting support
	B. 6 SVA- eligible nucleus modules

	Appendix C. VM/ ESA Considerations
	C. 1 Overview
	C. 2 Communication between virtual machines
	C. 3 Local mode database access

	Appendix D. BS2000/ OSD Considerations
	D. 1 About this appendix

	Appendix E. DC/ UCF Test Environment
	E. 1 Overview
	E. 2 Programs and the test environment
	E. 2.1 General considerations
	E. 2.2 Programs in the load areas
	E. 2.3 Programs in load (core- image) libraries

	E. 3 The test environment at run time
	E. 3.1 Load lists
	E. 3.2 SYSLOAD load list

	E. 4 Example of test environment execution

	Appendix F. Simulating 3270- Type Terminals
	F. 1 Overview
	F. 1.1 Online simulator
	F. 1.2 Batch simulator

	F. 2 Starting and ending a simulator session
	F. 3 Facsimile screens
	F. 4 Composing input lines
	F. 4.1 General instructions
	F. 4.2 Simulating control keys
	F. 4.3 Changing the simulator environment

	F. 5 Additional batch simulator topics
	F. 5.1 System configuration
	F. 5.1.1 System generation statements
	F. 5.1.2 Configurations for multiple lines and terminals

	F. 5.2 Control commands
	F. 5.2.1 MAXTERM
	F. 5.2.2 PAUSE
	F. 5.2.3 SET
	F. 5.2.4 TERMINAL
	F. 5.2.5 TIME

	F. 5.3 Batch simulator output
	F. 5.3.1 Representation of 3270 terminal attributes
	F. 5.3.2 Information provided for screen images
	F. 5.3.3 Sample screens

	F. 5.4 Executing the batch simulator
	F. 5.4.1 OS/ 390 systems
	F. 5.4.2 VSE/ ESA systems
	F. 5.4.3 VM/ ESA Systems
	F. 5.4.4 BS2000/ OSD systems

	F. 6 Simulator messages

	Index
	Special Characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

